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SUMMARY 
In this paper the piecewise uniform polar quantization of Gaussian source is analyzed. Simultaneous inside the rings 

after the first partition the constant probability density function of input signal vector amplitude is supposed. For this case 
and for the given code rate we optimized the granular distortion in order to get the manner of total points number 
distribution per rings after the first partition; than the manner of the second partition, i.e. we evaluated the expressions for 
amplitude levels number and the phase levels number on one amplitude level. Also we found the expression for granular 
distortion which we used to estimate the suggested model. Namely, we compare the obtained signal to quantization noise 
ratio with the known optimal ratio and on these bases we conclude, among the other things, under which condition the 
suggested approximation can be applied. 
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1. INTRODUCTION 
 

During the two-dimension vector quantization, 
vector obtained by sampling input signal in two 
points is replaced with vector from allowed set of 
vectors in such way that the quantization error is the 
smalest. In the case of polar quantization, these 
vectors are represented with their amplitude and 
phase which we consider in this paper. Successful 
vector quantization depends on an appropriate 
choise of allowed vector set (codebook). 
Quantization is necessary step in the digitalization 
process, but there are difficulties which cause the 
quantization error unavoidable during this process. 
So the quantization should be performed on such 
way that the quantization error doesn't reflect on 
signal reconstruction. This means that the allowed 
vector set should be chosen that the mean square 
error (distortion) is minimal. Since the quantization 
error is function of random signal which carries 
information, the error is also random variable. 
Therefore, the excellent knowledge of signal 
statistical caracteristics such as the joint probability 
density function of input vector amplitude and phase 
is necessary. 

Polar quantization techniques as well as their 
applications in areas such as computer holography, 
discrete Furrier transform encoding, image 
processing and communications have been studied 
extensively in the literature. Synthetic Aperture 
Radars (SARs) images can be represented in the 
polar format (i.e., magnitude and phase components) 
[1]. Uniform polar quantizers are employed in 
Synthetic Aperture Radars (SARs) imaging systems, 
interferometric and polarimetric applications [1,2]. 
Optimal uniform quantization is given in [3], but 
optimal quantizer is nonuniform. A generalization of 
uniform polar quantizer is a piecewise uniform polar 
quantizer. One of the most important results in polar 
quantization is due Swaszek and Ku who derived the 
asymptotically optimal nonuniform polar 
quantization [4]. The support region for scalar 

quantizers has been found in [5] by minimization of 
the total distortion D, which is a combination of 
granular (Dg) and overload (Do) distortions, 

og DDD += . We perform the two-step 
optimization as in [6].  

From the later presented facts, we can see the 
importance of codebook and the necessity of some 
algorithm for its determination. The procedure is as 
follows: the given bit rate determines the set 
dimension; after that the support region, the 
amplitude and the phase levels numbers are found 
by means of distortion optimization with 
simultaneous care about the signal statistical 
characteristics. That means that codebook depends 
not only on the chossen quantizer model, but also on 
the input signal. 

The high resolution (asymptotic) analysis of 
distortion determines the theoretical boundary and 
gives the opportunity for the quantizer parameters 
deffinition. Also, the usefullnes of the proposed 
quantizer is estimated on the base of the 
comparission between the obtained distortion and 
known optimal distortion. 

In this paper we will find the signal to 
quantization noise ratio of two-dimension piecewise 
uniform polar quantizer for Gaussian source and for 
the given bit rate. Simultaneous some 
approximations for the probability density function 
of vector amplitude are suqqested. The 
approximation is applied in order to simplify the 
quantizer construction. The comparison between the 
signal to quantization noise ratio obtained on this 
way and the known optimal signal to quantization 
noise ratio will show under which certain conditions 
the approximation application is correct.  

The Gaussian source has the importance because 
of using Gaussian quantizer on an arbitrary source; 
we can take advantage of the central limit theorem 
and the known structure of an optimal scalar 
quantizer for a Gaussian random variable to encode 
a general process by first filtering it in order to 
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produce an approximately Gaussian density, scalar-
quantizing the result, and then inverse-filtering to 
recover the original [7].  
 
 
2. HIGH RESOLUTION ANALYSIS OF 

SUGGESTED PIECEWISE UNIFORM 
POLAR QUANTIZATION 

 
The piecewise uniform polar quantization 

presents the improvement of uniform polar 
quantization, but on the other hand it leads to more 
complex structure of the quantizer. The piecewise 
uniform polar quantization more successfully 
follows the statistical characteristics of signal. It is 
achieved with the granular region partition into L 
rings (first partition) inside which there are new 
equidistant rings (Li) with amplitude step Δi (Fig. 
1a). Indeed, we can consider that the piecewise 
uniform polar quantizer consists of L uniform polar 
quantizaters with their own amplitude step Δi. After 
the first partition the amplitude decision levels 
would be noted by ri, 0 ≤ i ≤ L, r0 = 0, rL = rmax, 
where rmax is granular region boundary. In general 
case, these decision levels don't have to be 
equidistant, but if there are than ri+1 − ri = Δ = rmax/L. 
Now, we can say that the amplitude step for partition 
i is Δi = (ri+1 − ri)/Li, as well as that the amplitude 
decision and reproduction levels of the piecewise 
uniform polar quantizers are  
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respectively.  

Also, in a general case the phase levels number 
at amplitude level j inside partition i (Ni,j) don't have 
to be the same on each level inside one partition  
(Fig. 1b). Such polar quantization is called also 
unbounded polar quantization. Here the points 

number inside one partition is ∑
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. There is also another situation when the 

phase levels number is the same on all amplitude 
levels inside one partition (Mi). Than we have the 
product polar quantization because of the points 

number in partition is product of the amplitude 
levels number and the phase levels number 
(Ni=Li×Mi). We will observe the general case, i.e. we 
will consider the unbounded polar quantization 
where the decision and reproduction phase levels are 
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Fig. 1  Amplitude (a) and phase (b) levels at  the 
piecewise uniform polar quantization 

 
Since the piecewise uniform polar quantizer 

consists of L uniform polar quantizers which have 
the own distorzion D(i), the total average mean 
square error (distortion) per one sample, i.e. one 
dimension is  
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where Dg is total granular distortion, Do overload 
distortion and f(r,φ) the joint probability density 
function of input vector amplitude and phase. 

As we citied in the introduction, we will consider 
the case of piesewise uniform polar quantization of 
Gaussian source when the following approximation 
will be applied: the amplitude probability density 
function is replaced with constant inside the rings 
after the first partition. Without losing generality, we 
suppose that the input signal samples are 
independent Gaussian variables with zero mean 
value and variance 1, which means that the joint 
probability density function of vector amplitude and 
phase is f(r,φ) = r/(2π)exp(−r2/2), i.e. amplitude and 
phase of input vector are independent random 
variable. The input vector phase has the uniform 
distribution while the input vector amplitude has the 
Rayleigh probability density function. First we can 
solve integrals per φ and after that the distortion per 
sample for partition i is 
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where f(r) is amplitude probability density function. 
Now, we apply approximation for amplitude 
probability density function. We suppose that f(r) is 
constant inside partition i (f(r) = fi), and later we will 
perform analysis for the next cases: 

1st case:  fi = riexp(−ri
2/2)  for   ri ≤ r≤ ri+1  

(the amplitude probability density function inside 
partition i has the value for lower ring boundary [8]) 

2nd case: fi = ri+1exp(−ri+1
2/2)  for  ri ≤ r≤ ri+1  

(the amplitude probability density function inside 
partition i has the value for upper ring boundary ) 

3rd case: 
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for  ri ≤ r≤ ri+1 
(the amplitude probability density function inside 
partition i has average value) 
 

As result of this assumption application we can 
write that the distortion per sample for partition i is 
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where  
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The final expression for total granular distortion 
per sample is derived after optimization which 
consists of 3 steps. First we will optimize D(i) per 
Ni,j while we respect the limitation which is given by 

i
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, . This optimization is done by means of 

Lagrange multiplicator method. On this way we 
found that D(i) is minimal for 
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The next step will be the optimization of the 
obtained expression D(i) per Li which gives the 
optimum for rings number inside partition i  
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Now the expression for total granular distortion 
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method and for points number inside partition i we 
derived the next formula  
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After this the total granular distortion per sample is 

2

1

4
1

23 )(
6 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=
+

L

i
iiiig rrfl

N
D π . (11) 

If ri+1 − ri = const. = Δ = rmax/L, than the granular 
distortion will be 
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Here we will present the equation for known 
optimal distortion of piecewise uniform polar 
quantizer [9] in order to compare the obtained 
results with reference ones 
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We will calculate the signal power to granular 
distortion ratio in dB and it will be called the signal 
to quantization noise ratio. Since the parameters of 
Gaussian process are normalized, the signal to 
quantization noise ratio will be 

g
g D

SNR 1log10= , (14) 

where index g refers on granular distortion. 
 
3. RESULT DISCUSSION 
 

The results of the signal to quantization noise 
ratio are obtained by high resolution analysis with 
condition that the amplitude probability density 
function inside the ring after the first partition is 
constant. Here we have to define 2 parameters, code 
rate R and granular regione boundary rmax. The code 
rate or the vector quantizer rate is  

NR 2log
2
1

= , (15) 

where N is the codebook size. The granular region 
boundary is calculated by equation 

RNNr 2
max 2,

2
ln2 == . (16) 

It is well known that total distortion with the 
granular region boundary determined by eq. (16) has 
minimal value [10]. The approximation of the 
amplitude probability density function is performed 
on 3 ways, for the lower ring boundary (1st case of 
approximation), for the upper ring boundary (2nd 
case of approximation) and with the average 
amplitude probability density function inside the 
ring (3rd case of approximation).  

Fig. 2 and Fig. 3 present grafics of the obtained 
resuts. Also, the signal to quantization noise ratio 
calculated for exact asymptotic analysis (whithout 
approximation for amplitude probability density 
function) is also shown on these figures (solid lines). 
It is important to mention that even the second case 
of approximation gives the greatest signal to 
quantization noise ratio, it is not the best 
approximation. Namely, this approximation is very 
rude.  

Fig. 2 shows the signal to quantization noise 
ratio dependence as a function of the value L for a 
given code rate R. Although the lines of all 
approximation cases approuch to solid line, the third 
case of approximation the best corespond to solid 
line, i.e. it has the smalest error. Namely, 
convergence of the second and the third 
approximations are slow, i.e. convergence is achived 

with L value which are unpossible for given R. This 
means that approximation can be applied only when 
the amplitude probability density function inside the 
ring is replaced with the average amplitude 
probability density function for the same ring. 

It is obvious from the figure that uniform polar 
quantization (L=1) is not sutiable for any 
approximation. Evan for the third case of 
approximation and R = 8 bit/sample, the signal to 
quantization noise ratio value is less than the value 
of the appropiate point on solid line (44.0249 dB) 
for 2.9017 dB. So the approximation of amplitude 
probability density function can be apply if the 
amplitude step is variable along the granular region.  
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Fig. 2  Signal to quantization noise ratio as a 
function of  number of rings after the first partition L 

for given code rate: 
a) R = 4 bit/sample,  b) R = 8 bit/sample 

 
It is also interesting to observe from the Fig. 2a 

and 2b that the better results are achived for lesser R, 
i.e. for lesser size of codebook. This is more obvious 
in Fig. 3 on which the signal to quantization noise 
ratio as a function of R for a given L is presented. 
Namely, the lines that correspond to the cases with 
approximation are not parallel with line that 
correspond to the exact asymptotic analysis (solid 
line), i.e. the lines are closer to solid line for smaler 
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R although these deviations are not significant. Also, 
if we compare Fig. 3a and 3b, we again see that the 
better results of approximation aplication are 
achived for greater L, i.e. when the amplitude step 
severel times varies along granular region. 
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Fig. 3  Signal to quantization noise ratio dependence 

on code rate R for given number of rings after the 
first partition: 

a) L = 2,  b) L = 8 
 

4. CONCLUSION 
 

In this paper we analyze the piecewise uniform 
polar quantization for Gaussian source which is the 
process fundamental for the digitalization. In our 
research we used asymptotic method during which 
we applied new approximation of the amplitude 
probability density function. We suggested the 
analysis model at which the amplitude probability 
density function inside the rings after the first 
partition is replaced with constant on tree ways. 

The results of the signal to quantization noise 
ratio obtained by asymptotic analysis showed that 
the third case of approximation, with average 
amplitude probability density function gives the best 
results. For given code rate the signal to quantization 

noise ratio tends to theoretical maximum with the 
increase of the number of rings after the first 
partition, i.e. it is better that the amplitude step 
severel times varies along granular region. It is also 
shown that for given number of rings after the first 
partition the better results of approximation 
application are achieved for lower code rate.  

The other two approximations didn’t give the 
expected results. Their application is theoretically 
possible for the number of rings after the first 
partition which is impossible in practice. 

These results and the fact that we apply constant 
amplitude probability density function lead us to 
conclusion that the application of the third case of 
approximation is possible in practice which is 
significant for the easier construction of the 
piecewise uniform polar quantizer for Gaussian 
source. 
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