
Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 1

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

LOGICAL REASONING ABOUT PROGRAMMING OF MATHEMATICAL
MACHINES

Valerie NOVITZKÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University Košice,

Letná 9, 042 10 Košice, Slovak Republic, E-mail: Valerie.Novitzka@tuke.sk

SUMMARY
We always start the solving of a problem with the formulation of its theoretical foundations. If we would like to use

mathematical machines (computers) in problem solving, we need to formalize its theoretical foundations as logical
reasoning because the programs should really prove the correctness of their results. In our paper we present central ideas of
our approach regarding programming as logical reasoning. Our first idea is that the theory in which we reason is the type
theory starting with basic types. Our second idea is that the running program is actually a proof in the theory above
formulated as the intuitionistic linear version of Gentzen’s calculus. We show that such a synthesis of categorical and linear
logic forms a theoretical foundations of programming for mathematical machines.

Keywords: category theory, topos, categorical logic, type theory, linear logic

1. INTRODUCTION

One of the famous computer scientist, Niklaus
Wirth, defined programs as data structures and
algorithms. In his book [1] he thoroughly explained
how to develop middlesize Pascal programs, how to
define types, declare data structures, formulate
procedures, functions and main programs in the
rational manner. It is true that Pascal is until now
the most rational procedural programming
language. His approach has minimally two
drawbacks: the first is that the program cannot
check the malfunctionality of hardware; the second,
that he does not give the answer to the question how
exactly develop correct programs in which the
results are really proved.

Traditional software engineering approach to
solve the second drawback is the following: a client
formulates his requirements specification and a
programmer derives from it a program in whatever
programming language, he edits (normally or
structurally) text, compiles it, uses librarian, linkage
editor, loader, routines of operating system,
executes his program and gets some results that are
not mathematically proved. Every possible form of
testing whether the program does the required
actions cannot be concerned as proof neither in
Aristotelian notion of a logical proof or in the sense
of John Stuart Mill’s idea of inductive logic.
 We attempt to formulate a theoretical
foundations of program development. In such a
manner program results after execution have to be
formally proved using mathematical ideas, lemmas
and theorems. We be aware of the meaning of czech
computer scientist Antonín Svoboda that computers
are mathematical machines which can realize
mathematical forms of human thinking. We try to
find such mathematical disciplines which can
describe in formally exact way the whole process of
development and execution of programs. We begin
with the question: what actually a program is?; i.e.
what does a program perform? Our analysis leads to

the answer that a program solves human rational
problems, i.e. really scientific problems. Solving of
such problems is possible only in a framework of a
mathematical theory. We find a discipline,
categorical logic, formulated in the last decade [2],
which is able to describe by the help of types, terms,
morphisms and functors the whole process of
program development starting from categories of
basic types to a total category. Indeed, categorical
logic can exactly describe problem solving process
in the framework of program development process
in mathematically constructive manner .
 Total category, the intermediate result of this
process can be mapped to the categorical semantics
of linear logic, a new approach to mathematical
logic, which respects actions of mathematical
machines in very disciplinary way.
 In this paper we should like to explain the
startpoint of program development in categorical
logic, i.e. basic types, and basic notions of
semantics of linear logic that can be mapped to
some programming language. Our approach is
practically founded in mathematics, logics and type
theory and gives new ideas not only for constructing
new proof assistants but also to the new
development of hardware by extending it by new
processors of basic types. This paper is the starting
one which will be followed by more detail
explanation of further aspects of categorical logic
and linear logic, i.e. of exact reasoning proving the
results of programs. We hope that these correct
programs could show hardware errors and so
increase the reliability of program execution.

2. BASIC CONCEPTS FOR PROBLEM

SOLVING

 From the disscussion in previous section it
follows that the resulting data structure of executed
program have to give proved answers to the
questions formulated at the beginning of program
development process. We can achieve these only in

2 Logical Reasoning about Programming of Mathematical Machines

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

the case when the program itself represents such
problem solving process which is formulated in a
well-formed and general mathematical theory. After
a thorough foundation of the acceptable logical
reasoning leading to the proved result we decided to
start our reasoning with the most general
mathematical theory, i.e. with category theory .
 We will shortly introduce here only those
notions from category theory that serve for our
purposes. A category C consists of two collections:
a collection of objects A, B, ...; and a collection of
arrows (or morphisms) denoted f, g, For and
arrow f: A → B the objects A and B are the domain
and codomain, respectively. A homset Hom(A, B) is
the set of all arrows with domain A and codomain B
in C. The arrows f: A → B and g: B → C are
composable, its composition g ο f = g f : A → C is
associative in C and every object A has identity
arrow idA: A → A. We say that a category C has
terminal object 1 (initial object 0) if for every
category object A there exists unique arrow A → 1 (
0 → A).
 Categories as other kinds of mathematical
structures come equipped with the notion of
homomorphism between categories called functor.
A functor F: C → D from a category C to the
category D takes the objects of C to the objects of
D and the arrows of C to the arrows of D
preserving domains, codomains, identities and
composition. If F,G: C → D are functors with the
common domain and codomain, a natural
transformation μ: F → G is a family of arrows μA:
FA → GA for every object A of the category C, such
that for every arrow f: A→ B in C

G f ο μ A = μ .
.

 We note here that the objects of a category are
something so general that in a category we can only
distinghish one object from other ones. In general
category theory we do not suppose anything more
about the nature of category objects. But of course,
these objects may be sets in the sense of an
axiomatic set theory. Therefore we can denote by
Set the category of sets as objects and functions
between them as morphisms.

For a category C and its fixed object A we define
hom functor Hom(A, -): C → Set, which assigns to
every object B from the category C the homset
Hom(A ,B) of all arrows from the object A to B, and
to every arrow f:B → C a function

Hom(A , f): Hom(A, B) → Hom(A, C).

 One of the important perceptions of category
theory is that an arrow x:T→ A in a category C can
be regarded as an element of A over T. An object T
is called the domain of variation of x and x is called
a (variable) element of the object A. This method
enables a generalization of the set-theoretic
membership relation. It is clear that any object A of

a category C has at least one element idA , its
generic element.
 We denote by Func(C, Set) the category of
functors F: C→ Set from the category C to the
category Set as objects and natural transformations
between them as arrows. Similarly as above,
elements of a functor F are natural transformations
from objects of functor category, i.e. the functors,
into the functor F. From Yoneda lemma [3] it
follows: if an element u of a functor F over the hom
functor Hom(A, −) is a natural A - isomorphism, u
∈ FA, then this unique u is called the universal
element for functor F. A functor F that has the
universal element is representable functor. A
functor Sub: C → Set is a subobject functor if it
assigns to every object A in C the set of subobjects
of A.
 Category theory expresses equations by means
of commutative diagrams. A diagram D in a
category C is a graph homomorphism D: I → C,
where I is the index (shape) graph of the diagram
D. A diagram D is commutative, if all paths from an
object A to the object B in diagram constructed as
compositions of corresponding arrows are equal,
e.g. the diagram in Fig. 1. commutes

 f2 fn-1
 • • . . . • •
 f1 fn

A B

 g1 gm
 • • . . . • •
 g2 gm-1

Fig. 1 Commutative diagram in category

and expresses the following equation:

fn fn-1 ... f2 f1 = gm gm-1 ... g2 g1 .

 A commutative cone α with vertex V over a
diagram D is an element of D over a constant
diagram V, as in Fig. 2.

 V

 αi

. . . Di-1 Di . . .

Fig. 2 Commutative cone

A functor Cone (−, D) : C → Set assigns to an
object V of the category C the set Cone(V, D) of
commu- tative cones with vertex V over the diagram
D. A universal element of the functor Cone(− , D),
if exists, is a limit of the diagram D. A category C

Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 3

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

has finite limits if every finite diagram D in C has a
limit.
 If A and B are objects of a category C, then A ×
B is the product object together with two arrows
(projections):

π1 : A × B → A and π2 : A × B → B,

such that for any object C and arrows f: C → A
and h: C → B there exists unique arrow h: C → A
× B with

π1 h = f and π2 h = g

as in Fig. 3.

π2

A × B B

 π1 h g

A C
f

Fig. 3 Cartesian product in category

To generalize cartesian product of objects of a
category C we have to introduce the concept of
indexing. Let B be a base category with the index
sets I, J, ... as objects and functions u: I → J
between them as arrows. We define two way of
indexing of objects in a category C :

1. pointwise indexing by a functor B → C,
such that it assigns to every index set
object I a family (Ai)i∈I of objects from C;

2. display indexing by a functor C → B
which assigns to a subcategory of C the
object I indexing it.

Now we can say that a category C has (finite)

products if any (finite) indexed family of objects in
C has a product. A category C is cartesian closed
category (ccc) if the following conditions hold:

1. C has a terminal object 1;
2. C has finite products;
3. for any pair of objects A and B in C there is

an exponential object BA such that for
every object C in C the following homsets
are isomorphic

Hom(C × A, B) ≅ Hom(C, BA).

A topos is a special kind of category defined by

axioms saying roughly that certain constructions
one can make with sets can be done in a category. A
topos is a category E which satisfies the following
properties:

1. it is ccc,
2. it has finite limits;
3. it has representable subobject functor.

Moreover, if we want a topos to be a generalized
mathematical theory, we suppose that a set of
hypotheses or axioms are formulated in predicate
logic. They implicitly define some kind of structure
of objects and some properties of morphisms in the
category E. A topos is really a structure of a general
theory defined by axioms formulated possibly in
higher-order logic. An elementary topos is such one
whose axioms are formulated in the first-order
logic, i.e. as it was mentioned above by defining
element, elementary topos is generalized axiomatic
set theory.

In elementary topos we can define a
mathematical structure on every its object in the
sense of [4]. Such a structure is an ordered sequence

U = (M, R1 , ... , Rn , F1 , ... Fm , { ci }i∈I),

where M is a non-empty set, R1 , ... Rn are relations
on M, F1 , ... Fm are functions on M and ci are
elements (constants) of M. Of course, the properties
of mathematical entities of such a structure are also
determined by axioms that can be regarded as a
conservative extension of axioms of set theory.

An elementary topos whose objects are some
distinguished structures we regard as a category of
basic types. Categories of basic types are the
starting point for constructing more complex types
via functors representing also the type-theoretical
constructors for simple types (×, →, +), dependent
types, inductive types, recursive types [5] (by
recursive morphisms and functors) and polymorphic
types (allowing type variables) as in [2] and of
course the morphisms between such constructed
objects.

So, we have formulated a way how to construct
arbitrary data structures according to the types and a
mathematical discipline of derivation data structures
from simple ones starting with basic types. We note
that like the floating point processor, some of
denoted basic types (which can be not only trivial)
would need their own processors in hardware of
mathematical machines of future.

Constructive process of mathematically proved
and uniquely typed data structures finishes with a
total category contaning proofs and results of our
problem solving process. We note that it is possible
to think about such a constructive approach to
problem solving on account of the continually
evolving discipline called categorical logic.

3. BASIC CONCEPTS FOR PROGRAMMING

After the basic theoretical reasoning which will
finish by the construction of a total category
containing the result of problem solving or
answering the interested questions by a didaction
based on a well-formed theories, we follow by

4 Logical Reasoning about Programming of Mathematical Machines

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

construction of a program that realizes the
categorical logical reasoning in a form of linear
logic. But we mention that in the last two decades
we are more and more convinced of the basic
importance of the semantics, because from the
semantical framework we can already generate an
understandable syntax of some text characterizing
logical reasoning. This circumstance was
comprehended already in the framework of classical
mathematical logic, where the most important
questions of the consistency, completeness and
independence of axioms of the theories must be
proved in mathematical structures or models. We do
not divide the syntactical writing of a logical
reasoning as a proof from the structures, in which
the symbols of logic get their senses and
denotations, i.e. from the appropriate structures.
This is why we will map firstly the total category to
the categorical semantics of linear logic and
generate the syntactical aspects and visible sequent
calculus by a proved manner too from this
semantics.

Linear logic was introduced by J.Y.Girard [6]
and its simplicity and elegance makes it suitable
also for reasoning about programming mathematical
machines. To start to work on linear logic reasoning
we need to construct a functor that maps the total
category to the appropriate category forming the
categorical semantics of linear logic.

In the next we formulate the categorical
semantics of linear logic for which we use the
following concepts. A commutative quantale is a
structure of the form

(Q , ≤ , ο , 1, 0, T),

where (Q , ≤ , 0, T) is a complete lattice and (Q ,ο ,
1) is a commutative monoid. The symbol ’ο’
denotes a monoid multiplicative operation with the
neutral element 1 such that it distributes over
suprema:

a ο (Vi∈ S bi) = Vi ∈ S (a ο b),

where S ⊆ Q. The multiplication in such monoid is
called fusion. The monoid forms a locale. For
quantales Q and Q’ a quantale homomorphism is a
mapping q: Q → Q’, which preserves fusion, its
neutral element 1, and suprema. We can construct
the category CQuant of quantales as objects and
quantale homomorphisms between them as arrows.
It is clear that for every quantale Q there is identity
homomorphism idQ: Q → Q , the quantale
homomorphisms are composable and this
composition is associative. Therefore we can say
that CQuant is a category. For any quantale Q we
introduce residuation as a binary operation defined
as follows: for any a,b∈ Q

a ⎯o b = V{ x | x ο a ≤ b }.

Residuation operation corresponds with interesting
aspects of a connective of linear logic as we shaw
later.

A monoidal category C = (C , ⊗ , I, a, l, r)
consists of

1. a category C ;
2. a tensor functor ⊗ : C × C → C;
3. natural isomorphisms a , l , r

aX ,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z)
 lX : I ⊗ X → X
 rX : X ⊗ I → X,

where X, Y, Z are objects of the category C. The
first isomorphism expresses associativity of tensor
functor, the two latter left and right neutral element
of it. They have to satisfy the coherence axioms
expressed by the following diagrams: pentagon and
triangel in Fig. 4 and Fig. 5, respectively.

 a ⊗ id
((W ⊗ X) ⊗ Y) ⊗ Z (W ⊗ (X ⊗ Y)) ⊗ Z

 a

 (W ⊗ X) ⊗ (Y ⊗ Z) a

 a

W ⊗ (X ⊗(Y ⊗ Z)) W ⊗ ((X ⊗ Y) ⊗ Z)

 id ⊗ a

Fig. 4 Pentagon – coherence axiom for
isomorphism a

a
(X ⊗ I) ⊗ Y X ⊗ (I ⊗Y)

 r ⊗ id id ⊗ l

X ⊗ Y

Fig. 5 Triangle – coherence axiom for
isomorphisms l and r

 A monoidal category is strict if the
isomorphisms a , l and r are identities. To achieve
commutativity of tensor product we add to
monoidal category a natural isomorphism

cX , Y : X ⊗ Y → Y ⊗ X,

which satisfies coherence axioms in Fig. 6 and
Fig. 7, and we call such category symmetrical
monoidal category.
 For example, if C is a category with finite
products, it is easy to show that it is symmetric
monoidal category, tensor functor ⊗ is here given

Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 5

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

by cartesian product, I is the terminal object and
isomorphisms a, l, r, c are given by appropriate
combinations of pairing and projections.

 c ⊗ id
 (Y ⊗ X) ⊗ Z (X ⊗ Y) ⊗ Z

 a a

 Y ⊗ (X ⊗ Z) X ⊗ (Y ⊗ Z)

 id ⊗ c c

 Y ⊗ (Z ⊗ X) (Y ⊗ Z) ⊗ X
 a

Fig. 6 Coherence axiom for a and c
isomorphisms

 c
 X ⊗ Y I ⊗ X X ⊗ I

 c id l r

 Y ⊗ X X ⊗ Y X
 c

Fig. 7 Coherence axiom for c, l and r
isomorphisms

A symmetric monoidal category C is closed, if for
every object X in C the functor − ⊗ X has a
specified right adjoint, the hom functor Hom (X , -)

− ⊗ X ⎯| Hom (X, -),

that is, there exist natural transformations

εX ,Y : Hom(X, Y) ⊗ X → Y and

δX, Y : X → Hom(Y, X ⊗ Y),

which satisfiy the triangle identities for an
adjunction

1= ε (δ ⊗ 1): X ⊗ Y → Hom(Y, X ⊗ Y) ⊗ Y → X ⊗ Y

and

 1 = Hom(1, ε) δ :
Hom(X,Y) → Hom(X, Hom(X, Y) ⊗ X) → Hom (X, Y).

Every quantale Q regarded as a category is strict
symmetric monoidal category. So, we constructed
strict symmetric monoidal category as unique
semantics of the whole linear logic. This categorical
semantics gives a possibility to introduce the

sequent calculus of linear logic in the category
CQuant.

Then we can write down syntax of linear logic
defined e.g. in [7] by a sequent calculus. It is not the
aim of this short paper to characterize the all aspects
of linear syntactical reasoning in the framework of
sequent calculus, we only point out that it is proof
oriented. Linear reasoning using this calculus may
contain very difficult proof nets [8] with possible
interactions.

Because linear logic is different from classical
logic, but is an extension of it, we illustrate here
differences between some logical connectives at
least in two cases. Linear logic formulas are actions.
In contrast to classical logic where conjunction has
a very simple Tarski-Hilbert semantics, the linear
logic conjunction is fusion, that is two operands of
linear logic conjunction can actually ’annihilate’ by
the fusion (the notion of annihilation is known from
high-energy physics). In linear implication we say
that the first operand ontologically causes the result
of implication, i.e. the second operand. Such
explanation only help our phantasy, the exact
semantics we formulated mathematically above.
Here we would like to mention that some new
research projects about semantics of linear logic [9]
may help to conceive the proof nets also as a
purposeful finding of conclusion and so combining
the ontological causality with the ontological
teleology. We try to paraphrase the original Girard’s
example for linear implication. Assume that the first
operand A (action) is the sentence’ I spend some
amount of money ’ and the second operand B is the
following one’ I get some article’. The linear
implication

A ⎯o B

expresses that I spent some amount of money and
then I have got some article. But after implication I
have not this amount of money. That means the
cause of implication is also annihilated after the
relization of linear implication. This circumstance
has further interesting property of linear reasoning.
This reasoning has stages (as it is shown in the
framework of Zermelo-Fraenkel set theory
formulated in linear logic) in which the following
stage rewrites the previous stage. So, the reasoning
in linear logic realizes also garbage collection.

Finishing our short description we would like to
mention that from the categorical semantics of
linear logic we can generate a category for a
functional programming language of linear logic by
appropriate functor containing also its syntax in
ASCII form.

4. CONCLUSION

In this introducing paper we have shown that we

can solve scientific problems based theoretically in
the framework of categorical logic over basic types.
After obtaining the mathematical solution we can
construct a linear logic reasoning which represents

6 Logical Reasoning about Programming of Mathematical Machines

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

this solution by proofs in the semantics and syntax
of linear logic and so this solution can give in
mathematical machine the desired type structure
formulated in a theory based on intuitionistic linear
logic.

This work was supported by VEGA Grant
No.1/2181/05: Mathematical Theory of Progra-
mming and Its Application in the Methods of
Stochastic Programming

REFERENCES

[1] N. Wirth: Data Structures + Algorithms =

Programs, Prentice-Hall, Englewood Cliffs,
1975

[2] B. Jacobs: Categorical Logic and Type Theory,
Elsevier, Amsterdam, 1999

[3] M. Barr, Ch. Wells: Toposes, Triples and
Theories, Springer, 2002

[4] D. van Dalen: Logic and Structure, Springer,
1994

[5] A. Eppendahl: Categories and Types for
Axiomatic Domain Theory, PhD. Thesis, Univ.
London, 2003

[6] J.Y.Girard: Linear Logic, Theoretical Compu-
ter Science, 50, 1987, pp. 1-102

[7] J.Y.Girard: Linear Logic: Its Syntax and
Semantics, In: J.Y.Girard, Y.Lafont, and
L.Regnier, editors, Advances in Linear Logic,
Cambridge, 1995, pp. 1-42

[8] Y.Lafont: Interaction Nets, In: 17th Annual
Symposium on Principles of Programming
Languages, San Francisco, 1990, pp. 95-108

[9] A.Blass: A game semantics of linear logic,
Annals of Pure and Applied Logic, 56, 1992,
pp. 183-220

BIOGRAPHY

Valerie Novitzka defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from
1998, firstly as Assistent Professor, from 2004 as
Associated Professor. Her research areas covers
category theory, categorical logic, type theory,
classical and linear logic and theoretical foundations
of program development.

