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SUMMARY 
In the paper the use of Prolog, their benefits and drawbacks in automatic language implementation systems are 

presented. Various formal methods such as attribute grammars, operational semantics and denotational semantics are briefly 
described and implemented in Prolog. The advantages of Prolog basically stem from the use of unification and 
nondeterminism, and the price paid for the advantages are slower execution times. Various Prolog implementation of formal 
semantics method show that Prolog is viable tool for programming language development, design and prototyping. 
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1. INDRODUCTION 
 

Syntax and semantics of programming languages 
are usually described in natural languages. These 
descriptions are understandable and accessible to 
a wide variety of users. On the other hand, natural 
descriptions have many disadvantages such as: lack 
of clarity, ambiguities, and various interpretations. 
Therefore, a formal method is necessary which will 
describe syntax and semantics in a precise and 
unambigous manner. BNF is widely accepted for 
formal syntax description. Unfortunatelly in the area 
of semantics, the subject is more complicated 
because semantics is much more difficult to describe 
as syntax. Also, in semantics no standard method 
exist such as BNF. There are many approaches such 
as: axiomatic semantics, operational semantics, 
denotational semantics, and attribute grammars. In 
[34] was stated that formal methods must play 
a much more central role in language design. In such 
engineering approach to language design first formal 
specification is written. The next stage is to use 
formal specification to derive a prototype 
implementation. This implementation must be 
completed quickly, with little or no attention being 
paid to efficiency. But must allow to gain useful 
experience of writing and running programs in new 
language. This experience might well suggest 
improvements to the language design, requiring 
modifications to the specifications and prototype. In 
the last stage the efficient compiler must be 
implemented. 

The effectiveness of Prolog as a language for 
rapid prototyping compilers and for developing 
scanner generators, parser generators and code 
generators has already been shown [4, 33]. 
However, these works covered in formal manner 
only lexical and syntax part of language definition. 
In this paper the idea is extended to formal semantic 
definition. Prototype implementations for various 
formal methods such as attribute grammars, 
operational semantics and denotational semantics are 
presented and implemented in Prolog. 

The main goal of the paper is to show how 
different formal methods for programming language 
description can be implemented in Prolog achieving 
rapid language implementation. The organization of 
the paper is as follows. In section 2 attribute 
grammars and their Prolog implementation is briefly 
described. Relating logic programming and 
operational semantics is presented in section 3, 
followed by possible implementation of denotational 
semantics using logic programming in section 4. 
Related work is described in section 5. Finally, the 
conclusion is given in section 6. 

 
2. ATTRIBUTE GRAMMARS 
 

An attribute grammar [1, 6, 15, 21] is a context-
free grammar G = (N, T, S, P) augmented with 
attributes A and semantic rules R. An attributed tree 
for a program is a derivation tree where each node n, 
labelled by X, is attached with attribute instances 
that correspond to the attributes of X. Attribute 
evaluation is a process that computes values of 
attribute instances within an attributed tree 
according to the semantic rules R. The meaning of a 
program consists of the values of the synthesized 
attribute instances associated with the root node of 
the attributed tree. Semantic rules set up 
dependencies between attributes, which are 
foundation for several subclasses of attribute 
grammars (S-attributed, L-attributed, absolutely 
noncircular attribute grammars). An attribute 
grammar is S-attributed if it has only synthesized 
attributes. An attribute grammar is L-attributed if in 
each production p ∈ P following condition holds: 
attribute occurrence Xi.a can only depend on 
attribute occurrence Xj.b and j < i. Therefore, an 
attribute grammar is L-attributed if the value of 
attribute occurrences associated to some grammars 
symbol X is computed from values of attribute 
occurrences associated to grammar symbols left 
from X. In absolutely noncircular attribute grammar 
attributes can depend on any attributes associated to 
the grammar symbols in this production, providing 
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non-circularity of augmented dependency graphs. 
For S-attributed and L-attributed grammars the 
values of attribute occurrences can be computed in 
one-pass, which is most commonly interleaved with 
syntax analysis, while in absolutely noncircular 
attribute grammars attribute values can be computed 
in several passes. 

Semantics is with attribute grammars given in 
descriptive rather then algorithmic notation and 
therefore have many common features with logic 
programming. In the works [5, 13, 27] were shown 
that logic programming paradigm can additionally 
improve semantic expressiveness of attribute 
grammars. Relating attributes with logical variables, 
it is possibly to delay certain attribute evaluations. 
With this feature we can evaluate attributes of 
certain class of attribute grammars in one pass, while 
ordinary attribute grammars require multiple passes. 
An example of such attribute grammar is shown in 
Fig. 1 for simple calculation language DESK [27]. 
Attribute grammar for DESK language is absolutely 
noncircular, but not L-attributed, due to a right-to-
left arc in local dependency graph for the first 
production (Fig. 2). The attribute evaluation can not 
be totally done during parsing. Name analysis and 
code generation for expression part have to be 
postponed until the constant definition part of the 

program has been processed. However, with logical 
programming paradigm concepts – unification and 
logic variable, the evaluation process can be done in 
one pass. Logic programming paradigm and attribute 
grammar formalism both share a common structural 
representation: the proof tree in logic programming 
and the attributed tree in attribute grammars. The 
relationship is based on the correspondence 
nonterminal=predicate. This correspondence has 
been adopted in a number of syntactic tools build on 
top of logic programming. The most well known 
logic grammar formalism is the definite clause 
grammars (DCGs) [28]. When considering the 
arguments as attribute values and the embedded 
Prolog code as semantic rules, DCGs match very 
closely with L-attributed grammars. On the basis of 
logic programming a new class of attribute 
grammars is established: logical one-pass attribute 
grammars, which is proper superset of L-attribute 
grammars. Relating attributes with logical variables, 
it is possibly to delay certain attribute evaluations. 
The idea is to allow the value of an attribute instance 
to be undefined as long as it is not needed in making 
control decisions in the attribute evaluation process. 
Attribute grammar in the Fig. 1 is logical-one-pass 
attribute grammar and therefore can be implemented 
in Prolog (Fig. 3). 

  
 
 

productions Semantic  functions 
PROG → print  EXP CONSTPART PROG.code =  EXP.code + “PRINT 0” +“HALT 0” 

EXP.envi = CONSTPART.envs 
EXP0 → EXP1 + FACTOR EXP0.code =  EXP1.code + “ADD ” + FACTOR.value

EXP1.envi = EXP0.envi 
FACTOR.envi = EXP0.envi 

EXP →  FACTOR EXP.code =  “LOAD ” + FACTOR.value 
FACTOR.envi =EXP.envi 

FACTOR → CONSTNAME FACTOR.value = getvalue(CONSTNAME.name, 
                                               FACTOR.envi) 

FACTOR → NUMBER FACTOR.value = NUMBER.value 
CONSTNAME → ID CONSTNAME.name = ID.name  
CONSTPART→ ε CONSPART.envs = () 
CONSPART→ where  CONSTDEFLIST CONSPART.envs = CONSTDEFLIST.envs  
CONSTDEFLIST0 → CONSTDEFLIST1 ,            
                                    CONSTDEF 

CONSTDEFLIST0.envs = CONSTDEFLIST1.envs + 
                    (CONSTDEF.name,CONSTDEF.value) 

CONSTDEFLIST → CONSTDEF CONSTDEFLIST.envs = (CONSTDEF.name,  
                                           CONSTDEF.value) 

CONSTDEF  → CONSTNAME  = NUMBER CONSTDEF.name = CONSTNAME.name 
CONSTDEF.value = NUMBER.value 
 
 

Fig. 1  Attribute grammar for DESK language 
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Fig. 2  Local dependency graph for the first 

production 
 
 
 

program(Code) --> [print], 
  exp(Code1, Env), 
  constpart(Env), 
  {append(Code1, [print, 0, halt, 0], 
          Code)}. 
 
exp(Code1,Env) --> factor(Env, Value), 
    exp1(Code2, Env), 
 {append([load, Value], Code2, Code1)}. 
 
exp1(Code1, Env) -->  
  [+], factor(Env, Value), 
  exp1(Code2, Env), 
  {append([add, Value], Code2, Code1)}.                
exp1([], _) --> {null(epsilon)}.   
 
factor(Env, Value) --> constname(Name), 
    {getvalue(Name, Env, Value)}. 
factor(_,X) --> [X],{integer(X)}.                            
 
constname(Name)--> [Name],{atom(Name)}. 
 
constpart(Env) -->  [where], 
    constdeflist(Env). 
constpart([], _, _).   % epsilon 
 
constdeflist([Name, Value|Env]) -->      
  constdef(Name, Value), 
  constrest(Env). 
 
constrest(Env) --> [','], 
                   constdeflist(Env). 
constrest([]) --> {null(epsilon)}. 
 
constdef(Name, X) --> constname(Name), 
    [=],[X],{integer(X)}. 
 
getvalue(Name, [Name,Value|_], Value). 
getvalue(Name,[_, _|Env], Value) :-  
  getvalue(Name, Env, Value). 
 
null(epsilon). 

 
Fig. 3  Prolog implementation of DESK attribute 

grammar 
 
 

In this manner rapid language implementation is 
obtained and language can be tested by writing 
simple programs such as: 
 
?- program(P, [print,2,+,3,+,5], []). 
P = [load, 2, add, 3, add , 5, print, 
0, halt, 0] 
 
?- program(P, [print, x, +, y,  
     where, x, =, 7, ',', y, =, 3],[]). 
P = [load, 7, add, 3, print, 0, halt,0] 

?- program(P, [print, 9, +, y, 
   where, x, =, 7, ',' , y, =, 3], []). 
P = [load,9, add, 3, print, 0, halt, 0] 

 
One of the benefits of formal methods is also the 

possibility of automatically generating compiler or 
interpreter. Attribute grammars are very suitable for 
this task and many compiler-compiler systems exist 
such as FNC/2 [14] and LISA [22]. Some among 
them PANDA [8] and PROFIT [26] implements 
logical attribute grammars, which from attribute 
grammars automatically produce Prolog code. 

 
 

3. OPERATIONAL SEMANTICS 
 
In an operational semantics we are concerned 

with how to execute programs [11, 25]. We are 
interested with the relationship between initial and 
final state of execution. The notation <S, s> →  s' 
represents such relationship. The statement S will be 
executed in state s and terminated in final state s‘. 
The main mathematical tool used in operational 
semantics is induction, where induction rules have 
following general form: 
 
  <S1, p1> →  q1' ... <Sn, pn> →  qn' 
   _____________________________________________

if condition, 
        <S, p> →  q' 
 
where S is constructed from immediate constituents 
S1, ..., Sn. A rule has a number of premises (written 
above solid lines) and one conclusion (written below 
the solid line). A rule may also have a number of 
conditions (written to the right of the solid line) that 
have to be fulfilled whenever the rule is applied. 
Rules with an empty set of premises are called 
axioms and inference rules that characterize 
semantic behavior of the language constructs. The 
logical framework of operational semantics is based 
on unification and nondeterminism and therefore can 
be related to logic programming. Rule in general 
form can be translated to the following Prolog 
statement 
 
(s, P, Q’) :- condition , !,  
              (s1, P1, Q1’) 

      ... 
   (sn, Pn, Qn’). 

 
We have been implemented a simple operational 
semantics directed language implementation systems 
which made above transformation. In Fig. 4 an input 
(operational semantics for simple calculator 
language [29]) to our generator is presented, while in 
Fig. 5 an output (Prolog interpreter) is shown. 
 
 
Bnf: 
 P ::= on SE. 
 SE ::= E total off | E total SE. 
 E ::= E1 ‘+’ E2 | E1 ‘-’ E2 |  
       if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’ | 
       Number | lastanswer 

PROG: code 

print 
envi :EXP: code CONSTPART: envs
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Relations: 
  =>A : Numeral -> Exp -> Numeral 
  =>S : Numeral -> Seq_Exp –> Numeral* 
  =>P : Program -> Numeral* 
 
Semantics: 
 Axioms: 
  L |- lastanswer  =>A  L 
  L |- Number      =>A  Number 
 
 
 Rules: 
L|-E1=>A V1, L|-E2=>A V2, sum(V1,V2,V) 
             L|-E1 ‘+’ E2  =>A V 
 
L|-E1=>A V1, L|-E2=>A V2, dif(V1,V2,V) 
             L|-E1 ‘-’ E2  =>A V 
 
positive(E1), L|- E2  =>A  V 
  L|- if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’=>A V 
 
          L|- E3  =>A  V 
  L|- if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’=>A V 
 
          L|- E  =>A  V 
       L|- E total off =>S [V] 
 
     L|- E  =>A  V, V |- SE =>S  VS 
       L|- E total SE =>S [V|VS] 
 
          0|- SE  =>S  S 
            on SE =>P S 
 

Fig. 4  Input to operational semantics directed 
generator 

 
a([lastanswer], L, L). 
a([Number], L, Number). 
a([E1, ‘+’, E2], L, V) :-  
  a(E1,L,V1), a(E2,L,V2), sum(V1,V2,V). 
a([E1, ‘-’, E2], L, V) :-  
  a(E1,L,V1), a(E2,L,V2),dif(V1,V2,V). 
a([if,‘(‘,E1,‘,’,E2,‘,’,E3,‘)’],L,V) :-  
  positive(E1),  a(E2, L, V). 
a([if,‘(‘,E1,‘,’,E2,‘,’,E3,‘)’],L,V) :-  
  a(E3, L, V). 
 
s([E, total, off], L, [V]) :-  
  a(E, L, V). 
s([E, total, SE], L, [V|VS]) :-  
  a(E, L, V), s(SE, V, VS). 
 
p([on, SE], S) :- s(SE, 0, S). 
 

Fig. 5  Automatically generated Prolog interpreter 
 

Again, rapid language implementation is 
obtained and language can be tested by writing 
simple programs such as: 
 
?- p([on,  [[11], total,  
    [[lastanswer], total, off]]], K). 
K = [11, 11] 
 
?- p([on,[[10], total, 
     [[if, [lastanswer], [10], [2]],  
       total, off]]], K). 
K = [10, 2] 

4. DENOTATIONAL SEMANTICS 
 

In denotational semantics [29], abstract syntactic 
constructs of the defined language are denoted by 
mathematical objects. The denotation is usually 
a semantic function which models the meaning of 
the constructs. Semantic functions map the language 
constructs into various semantic domains. The main 
part of a denotational definition of a language 
consists of a set of semantic equations which define 
the semantic functions. These are typically 
expressed in terms of λ-calculus. In spite of very 
simple syntax λ-calculus is strong enough to 
describe all mechanically computable functions and 
can be viewed as a very simple programming 
language. Many languages (imperative, functional, 
process functional [16, 18, 19]) have been design 
and prototyped with denotational semantics, proving 
that denotational semantics is an excellent tool for 
programming language design.  

In order to be denotational semantics executable 
first task was construction of lambda machine 
interpreter in Prolog (Fig. 6). Following λ-
expressions have been taking into account: 
• Lambda abstractions (λx.E): a anonymous 

function is defined with formal parameter x and 
body E. This is converted into Prolog data 
structure lambda(X, E). 

• Lambda application (f x): the function f is 
applied to argument x. This is represented in 
Prolog as apply(F, X). 

• Let expressions (let x=E1 in E2): let expression 
is only syntactic sugar for (λx.E2)E1. In Prolog 
this is represented as let(X, E1, E2). 

• Conditional expression (if E1 then E2 else E3): 
expression E1 is evaluated to boolean value; if it 
is true then the value of conditional expression 
is E2; if it is false then the returned value is E3. 
The Prolog representation is cond(E1,E2, 
E3). 

• Fix-point combinator (fix F): where F is 
a functional of the form λf.E and f is a function 
appearing in the body of E. The application of 
the fix-point combinator simulates a recursive 
application of function. It is represented in 
Prolog as fix(F, E). 

• Primitive functions: there are also a number of 
standard arithmetic and relational functions with 
usual semantic interpretation and are defined 
straightforwardly in Prolog. 

 
lambda_machine(neg(E), X) :-  
    lambda_machine(E, V1), 
    neg(V1, X). 
lambda_machine(eq(E1, E2), X) :- 
    lambda_machine(E1, V1), 
    lambda_machine(E2, V2), 
    eq(V1, V2, X). 
lambda_machine(add(E1, E2),X) :- 
    lambda_machine(E1, V1), 
    lambda_machine(E2, V2), 
    X is V1 + V2. 
lambda_machine(sub(E1, E2), X) :- 
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    lambda_machine(E1, V1), 
    lambda_machine(E2, V2), 
    X is V1 - V2. 
lambda_machine(mul(E1, E2), X) :- 
    lambda_machine(E1, V1), 
    lambda_machine(E2, V2), 
    X is V1 * V2. 
lambda_machine(div(E1, E2), X) :- 
    lambda_machine(E1, V1), 
    lambda_machine(E2, V2), 
    X is V1 / V2. 
/* applicative evaluation order */ 
lambda_machine( 
 apply(apply(E1,E2),E3), X) :- 
   lambda_machine(apply(E1, E2), X1), 
   lambda_machine(apply(X1, E3), X). 
lambda_machine( 
 apply(lambda(X1, E1), E2), X) :- 
   lambda_machine(E2, X1), 
   lambda_machine(E1, X). 
lambda_machine( 
 apply(fix(X, E1), E2), Y) :- 
   fresh_copy(fix(X, E1), fix(XX, EE)), 
   X = fix(XX, EE), 
   lambda_machine(apply(E1, E2), Y). 
lambda_machine(let(X, E1, E2), Y) :- 
   lambda_machine( 
      apply(lambda(X,E2), E1), Y). 
lambda_machine(cond(E1, E2, _), X) :- 
   lambda_machine(E1, X1), 
   X1 == true, !, 
   lambda_machine(E2, X). 
lambda_machine(cond(_, _, E3), X) :- 
   lambda_machine(E3, X). 
/* reduction is not possible */ 
lambda_machine(X, X). 
 
/* fresh copy */ 
fresh_copy(X, Y) :- 
  fresh_copy1(X, Y, [], _). 
fresh_copy1(X, Y, S, S) :- 
  var(X), exist(X, S, Y). 
fresh_copy1(X, Y, S, [X, Y|S]) :-  
  var(X). 
fresh_copy1(X, X, S, S) :- atom(X). 
fresh_copy1(X, X, S, S) :- integer(X). 
fresh_copy1([], [], _, _). 
fresh_copy1([X|Xs],[Y|Ys], S1, S2) :- 
  fresh_copy1(X, Y, S1, S3), 
  fresh_copy1(Xs, Ys, S3, S2). 
fresh_copy1(X, Y, S, S1) :- 
  X =.. T, 
  fresh_copy1(T, Z, S, S1), 
  Y =.. Z. 
 
exist(X,[Z, Y|_], Y) :- X == Z. 
exist(X, [_, _|Rest], Y) :-  
  exist(X, Rest, Y). 
 
eq(V1, V2, true) :- V1 == V2, !. 
eq(_, _, false). 
 
neg(true, false). 
neg(false, true). 

 
Fig. 6  Lambda machine interpreter in Prolog 
 
 
With such lambda machine interpreter we are 

ready to interpret any lambda expression, such as: 

 
% (λx.x+1) 6 
?-lambda_machine( 
    apply(lambda(X, add(X, 1)), 6), R). 
X = 6, 
R = 7 
 
% (λx.λy.x + y) 5 1 
?-lambda_machine( 
    apply(apply(lambda(X,  
     lambda(Y, add(X, Y))), 5), 1), R). 
X = 5, 
Y = 1, 
R = 6 
 
% factorial function 
% fix F = (λf.λx.if x = 0 then 1  
%                else x * f(x - 1) 
?- lambda_machine( 
    apply(fix(F, lambda(X,  
     cond(eq(X, 0), 1,mul(X,  
      apply(F, sub(X, 1)))))), 3), R). 
X = 3, 
R = 6 
 

In transformation from denotational semantics to 
Prolog each semantic equation of the form 

 
 f [[…q…r…]]  = λarg. ...f’ [[q]] ...f’’ [[r]] ... 

  
is written as following Prolog statement: 
 
f(Phrase, Arg, Lambda_exp) :- 
   ... 
   f'(Subphrase_q, Arg, Lambda_exp_q), 
   ... 
   f''(Subphrase_r, Arg, Lambda_exp_r), 
   ... 
   . 

 
Finally, lambda expression is then interpreted on 

lambda machine to produce the meaning of phrase. 
In Fig. 7 the Prolog implementation of the following 
denotational semantics for arithmetic expressions of 
While language is presented [25]: 
 
Abstract syntax 
  n ∈ Num    
  x ∈ Var   
  a ∈ Aexp  
  
  a ::= n  | x | a1 + a2 | a1 * a2  | a1 - a2 
 
Semantic domains 
  Integer = {... -3, -2, -1, 0, 1, 2, 3 ...} 
  Truth-Value = {true, false} 
  State = Var → Integer 
 
Semantic valuation functions 
  N: Num →  Integer 
  A: Aexp →  State →  Integer 
  A [[n]] = λs. N [[n]] 
  A [[x]] = λs. s x 
  A [[a1 + a2]] = λs. A [[a1]] s + A [[a2]] s 
  A [[a1 * a2]] = λs. A [[a1]] s * A [[a2]] s 
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  A [[a1 - a2]] = λs. A [[a1]] s - A [[a2]] s 
 
/*  A : Aexp -> State -> Integer  */ 
a(X,State,apply(lambda(_,X),State)) :- 
  integer(X). 
a(X,State,apply(lambda(_,Val),State):- 
  atom(X), 
  lookup(X, State, Val). 
a(+(A1,A2),State,add(A1_den,A2_den)) :- 
  a(A1, State, A1_den), 
  a(A2, State, A2_den). 
a(*(A1,A2),State,mull(A1_den,A2_den)):- 
  a(A1, State, A1_den), 
  a(A2, State, A2_den). 
a(-(A1,A2),State,sub(A1_den,A2_den)) :- 
  a(A1, State, A1_den), 
  a(A2, State, A2_den). 
 
lookup(X,[X,Y|_],Y). 
lookup(X,[_,_|Rest],Y) :- 
  lookup(X, Rest, Y). 
 
evaluate(Program, State, Integer) :- 
  a(Program, State, Lambda_code), 
  lambda_machine(Lambda_code,Integer). 

 
Fig. 7  Prolog interpreter of While language 

 
 
Again, rapid language implementation is 

obtained and language can be tested by writing 
simple programs such as: 
 
?- a(+(7, 9),[],R). 
R = add(apply(lambda(_288,7),[]),  
             apply(lambda(_318,9),[])) 
 
?- evaluate(+(7, 9), [], R). 
R = 16 
 
?- evaluate(+(7, i), [I, 1], R). 
R = 8 

 
 

5. RELATED WORK 
 

In the engineering approach to language design 
[34] from formal specifications a prototype language 
implementation is derived, which allow language 
designer to gain useful experience with the 
language. This is a basis for further improvements to 
the language design, requiring modifications to the 
specifications and prototype. This approach, which 
is similar to approach described in [17], is also very 
suitable for domain-specific languages [7, 23, 30] - 
languages for solving problems in a particular 
domain, since domain-specific languages change 
more frequently [24]. In [9, 10] a constraint logic 
programming-based framework for specification, 
efficient implementation, and automatic verification 
of domain specific languages have been presented. 
Their framework is based on using Horn logic, and 
eventually constraints, to specify denotational 
semantics of domain specific languages. More 
efficient implementations of domain-specific 
langauge can be automatically derived via partial 
evaluation. Additionally, the executable 

specification can be used for automatic or semi-
automatic verification of programs written in the 
domain-specific language. This work is further 
extended in [31, 32] where logical framework for 
automatically generating domain-specific language 
infrastructure is described. Domain-specific 
language infrastructure (interpreter, compiler, 
debugger, profiler, etc) can be rapidly develop using 
logical framework. Latter is a particular example of 
the approach described in [12]. 

In [20] a Prolog-based approach to the 
development of language processors such as: 
preprocessors, frontends, evaluators, tools for 
software modification and analysis have been 
presented. Their tool Laptob is an experimental 
framework for language design, language processing 
and program transformation using Prolog.  

Using the same logical framework various 
formal methods for programming language 
description can be integrated. In  [2] the Minotaur 
system has been described. Minotaur is a generic 
interactive environment based on the integration of 
the Centaur system [3] and the FNC-2 system [14]. 
It is shown how attribute grammars techniques can 
be adequate for evaluation of a quite large subclass 
of natural semantics, which are special kind of 
operational semantics.  Further possible integration 
of different formal methods for programming 
language description based on the same logical 
framework is left to future work. 

 
 

6. CONCLUSION 
 

In the paper we show that Prolog is viable tool 
for programming language development, design and 
prototyping. Various formal methods such as 
attribute grammars, operational semantics and 
denotational semantics were implemented in Prolog. 
Semantics is with attribute grammars given in 
descriptive rather than algorithmic notation and 
therefore have many common features with logic 
programming. Logic programming paradigm can 
additionally improve semantic expressiveness of 
attribute grammars. Relating attributes with logical 
variables, it is possibly to delay certain attribute 
evaluations. With this feature we can evaluate 
attributes of certain class of attribute grammars in 
one pass, while ordinary attribute grammars require 
multiple passes. In addition to attribute grammars, 
the logic programming paradigm can be related with 
other semantic formalisms. In the paper also 
transformation from operational semantics and 
denotational semantics to Prolog programs are 
shown. Operational semantics use axioms and 
inference rules that characterize semantic behavior 
of the language constructs. Operational semantics 
can be easily implemented in Prolog, because logical 
framework of operational semantics is based on  
unification and nondeterminism. In denotational 
semantics we used semantic valuation functions 
which maps syntactic constructs into mathematical 
objects such as numbers, cartesian products, 
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functions, etc. Semantic valuation functions are 
written in lambda notation and can be executed with 
the lambda machine. Thus, a lambda machine 
interpreter is constructed in Prolog to allow 
execution of semantic functions. 
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