
Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 1

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

PROLOG AND AUTOMATIC LANGUAGE IMPLEMENTATION SYSTEMS

Marjan MERNIK, Matej ČREPINŠEK
Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, 2000 Maribor, Slovenia, tel. (+386 2) 220 7455,
E-mail: {marjan.mernik, matej.crepinsek}@uni-mb.si

SUMMARY
In the paper the use of Prolog, their benefits and drawbacks in automatic language implementation systems are

presented. Various formal methods such as attribute grammars, operational semantics and denotational semantics are briefly
described and implemented in Prolog. The advantages of Prolog basically stem from the use of unification and
nondeterminism, and the price paid for the advantages are slower execution times. Various Prolog implementation of formal
semantics method show that Prolog is viable tool for programming language development, design and prototyping.

Keywords: programming language design and prototyping, logic programming, attribute grammars, operational
semantics, denotational semantics, Prolog

1. INDRODUCTION

Syntax and semantics of programming languages
are usually described in natural languages. These
descriptions are understandable and accessible to
a wide variety of users. On the other hand, natural
descriptions have many disadvantages such as: lack
of clarity, ambiguities, and various interpretations.
Therefore, a formal method is necessary which will
describe syntax and semantics in a precise and
unambigous manner. BNF is widely accepted for
formal syntax description. Unfortunatelly in the area
of semantics, the subject is more complicated
because semantics is much more difficult to describe
as syntax. Also, in semantics no standard method
exist such as BNF. There are many approaches such
as: axiomatic semantics, operational semantics,
denotational semantics, and attribute grammars. In
[34] was stated that formal methods must play
a much more central role in language design. In such
engineering approach to language design first formal
specification is written. The next stage is to use
formal specification to derive a prototype
implementation. This implementation must be
completed quickly, with little or no attention being
paid to efficiency. But must allow to gain useful
experience of writing and running programs in new
language. This experience might well suggest
improvements to the language design, requiring
modifications to the specifications and prototype. In
the last stage the efficient compiler must be
implemented.

The effectiveness of Prolog as a language for
rapid prototyping compilers and for developing
scanner generators, parser generators and code
generators has already been shown [4, 33].
However, these works covered in formal manner
only lexical and syntax part of language definition.
In this paper the idea is extended to formal semantic
definition. Prototype implementations for various
formal methods such as attribute grammars,
operational semantics and denotational semantics are
presented and implemented in Prolog.

The main goal of the paper is to show how
different formal methods for programming language
description can be implemented in Prolog achieving
rapid language implementation. The organization of
the paper is as follows. In section 2 attribute
grammars and their Prolog implementation is briefly
described. Relating logic programming and
operational semantics is presented in section 3,
followed by possible implementation of denotational
semantics using logic programming in section 4.
Related work is described in section 5. Finally, the
conclusion is given in section 6.

2. ATTRIBUTE GRAMMARS

An attribute grammar [1, 6, 15, 21] is a context-
free grammar G = (N, T, S, P) augmented with
attributes A and semantic rules R. An attributed tree
for a program is a derivation tree where each node n,
labelled by X, is attached with attribute instances
that correspond to the attributes of X. Attribute
evaluation is a process that computes values of
attribute instances within an attributed tree
according to the semantic rules R. The meaning of a
program consists of the values of the synthesized
attribute instances associated with the root node of
the attributed tree. Semantic rules set up
dependencies between attributes, which are
foundation for several subclasses of attribute
grammars (S-attributed, L-attributed, absolutely
noncircular attribute grammars). An attribute
grammar is S-attributed if it has only synthesized
attributes. An attribute grammar is L-attributed if in
each production p ∈ P following condition holds:
attribute occurrence Xi.a can only depend on
attribute occurrence Xj.b and j < i. Therefore, an
attribute grammar is L-attributed if the value of
attribute occurrences associated to some grammars
symbol X is computed from values of attribute
occurrences associated to grammar symbols left
from X. In absolutely noncircular attribute grammar
attributes can depend on any attributes associated to
the grammar symbols in this production, providing

2 Prolog and Automatic Language Implementation Systems

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

non-circularity of augmented dependency graphs.
For S-attributed and L-attributed grammars the
values of attribute occurrences can be computed in
one-pass, which is most commonly interleaved with
syntax analysis, while in absolutely noncircular
attribute grammars attribute values can be computed
in several passes.

Semantics is with attribute grammars given in
descriptive rather then algorithmic notation and
therefore have many common features with logic
programming. In the works [5, 13, 27] were shown
that logic programming paradigm can additionally
improve semantic expressiveness of attribute
grammars. Relating attributes with logical variables,
it is possibly to delay certain attribute evaluations.
With this feature we can evaluate attributes of
certain class of attribute grammars in one pass, while
ordinary attribute grammars require multiple passes.
An example of such attribute grammar is shown in
Fig. 1 for simple calculation language DESK [27].
Attribute grammar for DESK language is absolutely
noncircular, but not L-attributed, due to a right-to-
left arc in local dependency graph for the first
production (Fig. 2). The attribute evaluation can not
be totally done during parsing. Name analysis and
code generation for expression part have to be
postponed until the constant definition part of the

program has been processed. However, with logical
programming paradigm concepts – unification and
logic variable, the evaluation process can be done in
one pass. Logic programming paradigm and attribute
grammar formalism both share a common structural
representation: the proof tree in logic programming
and the attributed tree in attribute grammars. The
relationship is based on the correspondence
nonterminal=predicate. This correspondence has
been adopted in a number of syntactic tools build on
top of logic programming. The most well known
logic grammar formalism is the definite clause
grammars (DCGs) [28]. When considering the
arguments as attribute values and the embedded
Prolog code as semantic rules, DCGs match very
closely with L-attributed grammars. On the basis of
logic programming a new class of attribute
grammars is established: logical one-pass attribute
grammars, which is proper superset of L-attribute
grammars. Relating attributes with logical variables,
it is possibly to delay certain attribute evaluations.
The idea is to allow the value of an attribute instance
to be undefined as long as it is not needed in making
control decisions in the attribute evaluation process.
Attribute grammar in the Fig. 1 is logical-one-pass
attribute grammar and therefore can be implemented
in Prolog (Fig. 3).

productions Semantic functions
PROG → print EXP CONSTPART PROG.code = EXP.code + “PRINT 0” +“HALT 0”

EXP.envi = CONSTPART.envs
EXP0 → EXP1 + FACTOR EXP0.code = EXP1.code + “ADD ” + FACTOR.value

EXP1.envi = EXP0.envi
FACTOR.envi = EXP0.envi

EXP → FACTOR EXP.code = “LOAD ” + FACTOR.value
FACTOR.envi =EXP.envi

FACTOR → CONSTNAME FACTOR.value = getvalue(CONSTNAME.name,
 FACTOR.envi)

FACTOR → NUMBER FACTOR.value = NUMBER.value
CONSTNAME → ID CONSTNAME.name = ID.name
CONSTPART→ ε CONSPART.envs = ()
CONSPART→ where CONSTDEFLIST CONSPART.envs = CONSTDEFLIST.envs
CONSTDEFLIST0 → CONSTDEFLIST1 ,
 CONSTDEF

CONSTDEFLIST0.envs = CONSTDEFLIST1.envs +
 (CONSTDEF.name,CONSTDEF.value)

CONSTDEFLIST → CONSTDEF CONSTDEFLIST.envs = (CONSTDEF.name,
 CONSTDEF.value)

CONSTDEF → CONSTNAME = NUMBER CONSTDEF.name = CONSTNAME.name
CONSTDEF.value = NUMBER.value

Fig. 1 Attribute grammar for DESK language

Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 3

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Fig. 2 Local dependency graph for the first

production

program(Code) --> [print],
 exp(Code1, Env),
 constpart(Env),
 {append(Code1, [print, 0, halt, 0],
 Code)}.

exp(Code1,Env) --> factor(Env, Value),
 exp1(Code2, Env),
 {append([load, Value], Code2, Code1)}.

exp1(Code1, Env) -->
 [+], factor(Env, Value),
 exp1(Code2, Env),
 {append([add, Value], Code2, Code1)}.
exp1([], _) --> {null(epsilon)}.

factor(Env, Value) --> constname(Name),
 {getvalue(Name, Env, Value)}.
factor(_,X) --> [X],{integer(X)}.

constname(Name)--> [Name],{atom(Name)}.

constpart(Env) --> [where],
 constdeflist(Env).
constpart([], _, _). % epsilon

constdeflist([Name, Value|Env]) -->
 constdef(Name, Value),
 constrest(Env).

constrest(Env) --> [','],
 constdeflist(Env).
constrest([]) --> {null(epsilon)}.

constdef(Name, X) --> constname(Name),
 [=],[X],{integer(X)}.

getvalue(Name, [Name,Value|_], Value).
getvalue(Name,[_, _|Env], Value) :-
 getvalue(Name, Env, Value).

null(epsilon).

Fig. 3 Prolog implementation of DESK attribute

grammar

In this manner rapid language implementation is
obtained and language can be tested by writing
simple programs such as:

?- program(P, [print,2,+,3,+,5], []).
P = [load, 2, add, 3, add , 5, print,
0, halt, 0]

?- program(P, [print, x, +, y,
 where, x, =, 7, ',', y, =, 3],[]).
P = [load, 7, add, 3, print, 0, halt,0]

?- program(P, [print, 9, +, y,
 where, x, =, 7, ',' , y, =, 3], []).
P = [load,9, add, 3, print, 0, halt, 0]

One of the benefits of formal methods is also the

possibility of automatically generating compiler or
interpreter. Attribute grammars are very suitable for
this task and many compiler-compiler systems exist
such as FNC/2 [14] and LISA [22]. Some among
them PANDA [8] and PROFIT [26] implements
logical attribute grammars, which from attribute
grammars automatically produce Prolog code.

3. OPERATIONAL SEMANTICS

In an operational semantics we are concerned

with how to execute programs [11, 25]. We are
interested with the relationship between initial and
final state of execution. The notation <S, s> → s'
represents such relationship. The statement S will be
executed in state s and terminated in final state s‘.
The main mathematical tool used in operational
semantics is induction, where induction rules have
following general form:

 <S1, p1> → q1' ... <Sn, pn> → qn'

if condition,
 <S, p> → q'

where S is constructed from immediate constituents
S1, ..., Sn. A rule has a number of premises (written
above solid lines) and one conclusion (written below
the solid line). A rule may also have a number of
conditions (written to the right of the solid line) that
have to be fulfilled whenever the rule is applied.
Rules with an empty set of premises are called
axioms and inference rules that characterize
semantic behavior of the language constructs. The
logical framework of operational semantics is based
on unification and nondeterminism and therefore can
be related to logic programming. Rule in general
form can be translated to the following Prolog
statement

(s, P, Q’) :- condition , !,
 (s1, P1, Q1’)

 ...
 (sn, Pn, Qn’).

We have been implemented a simple operational
semantics directed language implementation systems
which made above transformation. In Fig. 4 an input
(operational semantics for simple calculator
language [29]) to our generator is presented, while in
Fig. 5 an output (Prolog interpreter) is shown.

Bnf:
 P ::= on SE.
 SE ::= E total off | E total SE.
 E ::= E1 ‘+’ E2 | E1 ‘-’ E2 |
 if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’ |
 Number | lastanswer

PROG: code

print
envi :EXP: code CONSTPART: envs

4 Prolog and Automatic Language Implementation Systems

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Relations:
 =>A : Numeral -> Exp -> Numeral
 =>S : Numeral -> Seq_Exp –> Numeral*
 =>P : Program -> Numeral*

Semantics:
 Axioms:
 L |- lastanswer =>A L
 L |- Number =>A Number

 Rules:
L|-E1=>A V1, L|-E2=>A V2, sum(V1,V2,V)
 L|-E1 ‘+’ E2 =>A V

L|-E1=>A V1, L|-E2=>A V2, dif(V1,V2,V)
 L|-E1 ‘-’ E2 =>A V

positive(E1), L|- E2 =>A V
 L|- if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’=>A V

 L|- E3 =>A V
 L|- if ‘(’ E1 ‘,’ E2 ‘,’ E3 ‘)’=>A V

 L|- E =>A V
 L|- E total off =>S [V]

 L|- E =>A V, V |- SE =>S VS
 L|- E total SE =>S [V|VS]

 0|- SE =>S S
 on SE =>P S

Fig. 4 Input to operational semantics directed
generator

a([lastanswer], L, L).
a([Number], L, Number).
a([E1, ‘+’, E2], L, V) :-
 a(E1,L,V1), a(E2,L,V2), sum(V1,V2,V).
a([E1, ‘-’, E2], L, V) :-
 a(E1,L,V1), a(E2,L,V2),dif(V1,V2,V).
a([if,‘(‘,E1,‘,’,E2,‘,’,E3,‘)’],L,V) :-
 positive(E1), a(E2, L, V).
a([if,‘(‘,E1,‘,’,E2,‘,’,E3,‘)’],L,V) :-
 a(E3, L, V).

s([E, total, off], L, [V]) :-
 a(E, L, V).
s([E, total, SE], L, [V|VS]) :-
 a(E, L, V), s(SE, V, VS).

p([on, SE], S) :- s(SE, 0, S).

Fig. 5 Automatically generated Prolog interpreter

Again, rapid language implementation is
obtained and language can be tested by writing
simple programs such as:

?- p([on, [[11], total,
 [[lastanswer], total, off]]], K).
K = [11, 11]

?- p([on,[[10], total,
 [[if, [lastanswer], [10], [2]],
 total, off]]], K).
K = [10, 2]

4. DENOTATIONAL SEMANTICS

In denotational semantics [29], abstract syntactic
constructs of the defined language are denoted by
mathematical objects. The denotation is usually
a semantic function which models the meaning of
the constructs. Semantic functions map the language
constructs into various semantic domains. The main
part of a denotational definition of a language
consists of a set of semantic equations which define
the semantic functions. These are typically
expressed in terms of λ-calculus. In spite of very
simple syntax λ-calculus is strong enough to
describe all mechanically computable functions and
can be viewed as a very simple programming
language. Many languages (imperative, functional,
process functional [16, 18, 19]) have been design
and prototyped with denotational semantics, proving
that denotational semantics is an excellent tool for
programming language design.

In order to be denotational semantics executable
first task was construction of lambda machine
interpreter in Prolog (Fig. 6). Following λ-
expressions have been taking into account:
• Lambda abstractions (λx.E): a anonymous

function is defined with formal parameter x and
body E. This is converted into Prolog data
structure lambda(X, E).

• Lambda application (f x): the function f is
applied to argument x. This is represented in
Prolog as apply(F, X).

• Let expressions (let x=E1 in E2): let expression
is only syntactic sugar for (λx.E2)E1. In Prolog
this is represented as let(X, E1, E2).

• Conditional expression (if E1 then E2 else E3):
expression E1 is evaluated to boolean value; if it
is true then the value of conditional expression
is E2; if it is false then the returned value is E3.
The Prolog representation is cond(E1,E2,
E3).

• Fix-point combinator (fix F): where F is
a functional of the form λf.E and f is a function
appearing in the body of E. The application of
the fix-point combinator simulates a recursive
application of function. It is represented in
Prolog as fix(F, E).

• Primitive functions: there are also a number of
standard arithmetic and relational functions with
usual semantic interpretation and are defined
straightforwardly in Prolog.

lambda_machine(neg(E), X) :-
 lambda_machine(E, V1),
 neg(V1, X).
lambda_machine(eq(E1, E2), X) :-
 lambda_machine(E1, V1),
 lambda_machine(E2, V2),
 eq(V1, V2, X).
lambda_machine(add(E1, E2),X) :-
 lambda_machine(E1, V1),
 lambda_machine(E2, V2),
 X is V1 + V2.
lambda_machine(sub(E1, E2), X) :-

Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 5

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

 lambda_machine(E1, V1),
 lambda_machine(E2, V2),
 X is V1 - V2.
lambda_machine(mul(E1, E2), X) :-
 lambda_machine(E1, V1),
 lambda_machine(E2, V2),
 X is V1 * V2.
lambda_machine(div(E1, E2), X) :-
 lambda_machine(E1, V1),
 lambda_machine(E2, V2),
 X is V1 / V2.
/* applicative evaluation order */
lambda_machine(
 apply(apply(E1,E2),E3), X) :-
 lambda_machine(apply(E1, E2), X1),
 lambda_machine(apply(X1, E3), X).
lambda_machine(
 apply(lambda(X1, E1), E2), X) :-
 lambda_machine(E2, X1),
 lambda_machine(E1, X).
lambda_machine(
 apply(fix(X, E1), E2), Y) :-
 fresh_copy(fix(X, E1), fix(XX, EE)),
 X = fix(XX, EE),
 lambda_machine(apply(E1, E2), Y).
lambda_machine(let(X, E1, E2), Y) :-
 lambda_machine(
 apply(lambda(X,E2), E1), Y).
lambda_machine(cond(E1, E2, _), X) :-
 lambda_machine(E1, X1),
 X1 == true, !,
 lambda_machine(E2, X).
lambda_machine(cond(_, _, E3), X) :-
 lambda_machine(E3, X).
/* reduction is not possible */
lambda_machine(X, X).

/* fresh copy */
fresh_copy(X, Y) :-
 fresh_copy1(X, Y, [], _).
fresh_copy1(X, Y, S, S) :-
 var(X), exist(X, S, Y).
fresh_copy1(X, Y, S, [X, Y|S]) :-
 var(X).
fresh_copy1(X, X, S, S) :- atom(X).
fresh_copy1(X, X, S, S) :- integer(X).
fresh_copy1([], [], _, _).
fresh_copy1([X|Xs],[Y|Ys], S1, S2) :-
 fresh_copy1(X, Y, S1, S3),
 fresh_copy1(Xs, Ys, S3, S2).
fresh_copy1(X, Y, S, S1) :-
 X =.. T,
 fresh_copy1(T, Z, S, S1),
 Y =.. Z.

exist(X,[Z, Y|_], Y) :- X == Z.
exist(X, [_, _|Rest], Y) :-
 exist(X, Rest, Y).

eq(V1, V2, true) :- V1 == V2, !.
eq(_, _, false).

neg(true, false).
neg(false, true).

Fig. 6 Lambda machine interpreter in Prolog

With such lambda machine interpreter we are

ready to interpret any lambda expression, such as:

% (λx.x+1) 6
?-lambda_machine(
 apply(lambda(X, add(X, 1)), 6), R).
X = 6,
R = 7

% (λx.λy.x + y) 5 1
?-lambda_machine(
 apply(apply(lambda(X,
 lambda(Y, add(X, Y))), 5), 1), R).
X = 5,
Y = 1,
R = 6

% factorial function
% fix F = (λf.λx.if x = 0 then 1
% else x * f(x - 1)
?- lambda_machine(
 apply(fix(F, lambda(X,
 cond(eq(X, 0), 1,mul(X,
 apply(F, sub(X, 1)))))), 3), R).
X = 3,
R = 6

In transformation from denotational semantics to
Prolog each semantic equation of the form

 f [[…q…r…]] = λarg. ...f’ [[q]] ...f’’ [[r]] ...

is written as following Prolog statement:

f(Phrase, Arg, Lambda_exp) :-
 ...
 f'(Subphrase_q, Arg, Lambda_exp_q),
 ...
 f''(Subphrase_r, Arg, Lambda_exp_r),
 ...
 .

Finally, lambda expression is then interpreted on

lambda machine to produce the meaning of phrase.
In Fig. 7 the Prolog implementation of the following
denotational semantics for arithmetic expressions of
While language is presented [25]:

Abstract syntax
 n ∈ Num
 x ∈ Var
 a ∈ Aexp

 a ::= n | x | a1 + a2 | a1 * a2 | a1 - a2

Semantic domains
 Integer = {... -3, -2, -1, 0, 1, 2, 3 ...}
 Truth-Value = {true, false}
 State = Var → Integer

Semantic valuation functions
 N: Num → Integer
 A: Aexp → State → Integer
 A [[n]] = λs. N [[n]]
 A [[x]] = λs. s x
 A [[a1 + a2]] = λs. A [[a1]] s + A [[a2]] s
 A [[a1 * a2]] = λs. A [[a1]] s * A [[a2]] s

6 Prolog and Automatic Language Implementation Systems

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

 A [[a1 - a2]] = λs. A [[a1]] s - A [[a2]] s

/* A : Aexp -> State -> Integer */
a(X,State,apply(lambda(_,X),State)) :-
 integer(X).
a(X,State,apply(lambda(_,Val),State):-
 atom(X),
 lookup(X, State, Val).
a(+(A1,A2),State,add(A1_den,A2_den)) :-
 a(A1, State, A1_den),
 a(A2, State, A2_den).
a(*(A1,A2),State,mull(A1_den,A2_den)):-
 a(A1, State, A1_den),
 a(A2, State, A2_den).
a(-(A1,A2),State,sub(A1_den,A2_den)) :-
 a(A1, State, A1_den),
 a(A2, State, A2_den).

lookup(X,[X,Y|_],Y).
lookup(X,[_,_|Rest],Y) :-
 lookup(X, Rest, Y).

evaluate(Program, State, Integer) :-
 a(Program, State, Lambda_code),
 lambda_machine(Lambda_code,Integer).

Fig. 7 Prolog interpreter of While language

Again, rapid language implementation is

obtained and language can be tested by writing
simple programs such as:

?- a(+(7, 9),[],R).
R = add(apply(lambda(_288,7),[]),
 apply(lambda(_318,9),[]))

?- evaluate(+(7, 9), [], R).
R = 16

?- evaluate(+(7, i), [I, 1], R).
R = 8

5. RELATED WORK

In the engineering approach to language design
[34] from formal specifications a prototype language
implementation is derived, which allow language
designer to gain useful experience with the
language. This is a basis for further improvements to
the language design, requiring modifications to the
specifications and prototype. This approach, which
is similar to approach described in [17], is also very
suitable for domain-specific languages [7, 23, 30] -
languages for solving problems in a particular
domain, since domain-specific languages change
more frequently [24]. In [9, 10] a constraint logic
programming-based framework for specification,
efficient implementation, and automatic verification
of domain specific languages have been presented.
Their framework is based on using Horn logic, and
eventually constraints, to specify denotational
semantics of domain specific languages. More
efficient implementations of domain-specific
langauge can be automatically derived via partial
evaluation. Additionally, the executable

specification can be used for automatic or semi-
automatic verification of programs written in the
domain-specific language. This work is further
extended in [31, 32] where logical framework for
automatically generating domain-specific language
infrastructure is described. Domain-specific
language infrastructure (interpreter, compiler,
debugger, profiler, etc) can be rapidly develop using
logical framework. Latter is a particular example of
the approach described in [12].

In [20] a Prolog-based approach to the
development of language processors such as:
preprocessors, frontends, evaluators, tools for
software modification and analysis have been
presented. Their tool Laptob is an experimental
framework for language design, language processing
and program transformation using Prolog.

Using the same logical framework various
formal methods for programming language
description can be integrated. In [2] the Minotaur
system has been described. Minotaur is a generic
interactive environment based on the integration of
the Centaur system [3] and the FNC-2 system [14].
It is shown how attribute grammars techniques can
be adequate for evaluation of a quite large subclass
of natural semantics, which are special kind of
operational semantics. Further possible integration
of different formal methods for programming
language description based on the same logical
framework is left to future work.

6. CONCLUSION

In the paper we show that Prolog is viable tool
for programming language development, design and
prototyping. Various formal methods such as
attribute grammars, operational semantics and
denotational semantics were implemented in Prolog.
Semantics is with attribute grammars given in
descriptive rather than algorithmic notation and
therefore have many common features with logic
programming. Logic programming paradigm can
additionally improve semantic expressiveness of
attribute grammars. Relating attributes with logical
variables, it is possibly to delay certain attribute
evaluations. With this feature we can evaluate
attributes of certain class of attribute grammars in
one pass, while ordinary attribute grammars require
multiple passes. In addition to attribute grammars,
the logic programming paradigm can be related with
other semantic formalisms. In the paper also
transformation from operational semantics and
denotational semantics to Prolog programs are
shown. Operational semantics use axioms and
inference rules that characterize semantic behavior
of the language constructs. Operational semantics
can be easily implemented in Prolog, because logical
framework of operational semantics is based on
unification and nondeterminism. In denotational
semantics we used semantic valuation functions
which maps syntactic constructs into mathematical
objects such as numbers, cartesian products,

Acta Electrotechnica et Informatica No. 3, Vol. 5, 2005 7

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

functions, etc. Semantic valuation functions are
written in lambda notation and can be executed with
the lambda machine. Thus, a lambda machine
interpreter is constructed in Prolog to allow
execution of semantic functions.

REFERENCES

[1] H. Alblas, B. Melichar (Eds). Attribute

Grammars, Applicatons and Systems, LNCS,
Vol. 545, 1991.

[2] I. Attalli, D. Parigot. Integrating Natural
Semantics and Attribute Grammars: The
Minotaur System. TR No. 2339, INRIA, 1994.

[3] P. Borras, D. Clement, T. Despeyroux, J.
Incerpi, G. Khan, B. Lang, V. Pascual.
CENTAUR: The System. In Proceedings of
SIGSOFT’88, ACM Sigplan Notices, Vol. 24,
No. 2, pp. 14 – 24, 1989.

[4] J. Cohen, T. J. Hickey. Parsing and compiling
Using Prolog. ACM Transactions on
Programming Languages and Systems, Vol. 9,
No. 2, pp. 125 – 163, 1987.

[5] P. Deransart, M. Maluszynski. A Grammatical
view of Logic Programming. Proceedings of
the International Workshop on Programming
Languages Implementation and Logic
Programming, PLILP'88, pp. 219 – 251, 1988.

[6] P. Deransart, M. Jourdan (Eds). Attribute
Grammars and their Applicatons, LNCS Vol.
461, 1990.

[7] A. van Deursen, P. Klint, J. Visser. Domain-
Specific Languages: An Annotated
Bibliography. ACM Sigplan Notices, Vol. 35,
No. 6, pp. 26 – 36, 2000.

[8] A. Feng, Y. Sugiyama, M. Fuji, K. Torii.
Generating Practical Prolog Programs from
Attribute Grammars. In Proceedings IEEE
COMPSAC'87, pp. 605 – 612, 1987.

[9] G. Gupta. Horn Logic Denotations and Their
Applications. The Logic Programming
Paradigm: A 25 years Perspective. Springer,
LNAI, pp. 127 – 160, 1999.

[10] G. Gupta, E. Pontelli. Specification,
Implementation, and Verification of Domain-
Specific Languages: A Logic Programming-
Based Approach. LNCS, Vol. 2407, pp. 211 –
239, 2002.

[11] J. Hannan. Operational Semantics – Directed
Compilers and Machine Architectures. ACM
Transactions on Programming Languages and
Systems, Vol. 16, No. 4, pp. 1215 – 1247,
1994.

[12] J. Heering, P. Klint. Semantics of Programming
Languages: A Tool-Oriented Approach. ACM
Sigplan Notices, Vol. 35, No. 3, pp. 39 – 48,
2000.

[13] P. Henriques. A semantic evaluator generating
system in Prolog. Proceedings of the

International Workshop on Programming
Languages Implementation and Logic
Programming, PLILP'88, pp. 201 – 218, 1988.

[14] M. Jourdan, D. Parigot. Internals and externals
of the FNC-2 attribute grammar system. In
Attribute Grammars, Applications and
Systems, LNCS, Vol. 545, pp. 485 – 506, 1991.

[15] D. E. Knuth. Semantics of context-free
languages. Math. Syst. Theory, Vol. 2, No. 2,
pp. 127 – 145, 1968.

[16] J. Kollar. Process Functional Programming.
Proc. ISM’99, Rožnov pod Radhoštem, Czech
Republic, April 27-29, pp. 41 – 48, 1999.

[17] J. Kollar, V. Novitzka. From requirements
specification to design specification. Journal of
Information, Control and Management
Systems, Vol. 1, No. 2, pp. 55 – 64, 2003.

[18] J. Kollar. The Conception and Application of
PFL: A Process Functional Programming
Language. Problemy programmirovanija, No.
1, pp. 5 – 23, 2004.

[19] J. Kollar, V. Novitzka. Semantical Equivalence
of Process Functional and Imperative
Programs. Acta Polytechnica Hungarica, Vol.
1, No. 2, pp. 113 – 124, 2004.

[20] R. Laemmel, G. Riedewald. Prological
Language Processing. First Workshop on
Language Descriptions, Tools and
Applications, LDTA’01, pp. 117 – 141, 2001.

[21] M. Mernik, D. Parigot (Eds). Attribute
Grammars and Their Applications. Informatica,
Vol. 24, No, 3, Special issue, 2000.

[22] M. Mernik, M. Lenič, E. Avdičaušević, V.
Žumer. LISA: An Interactive Environment for
Programming Language Development. 11th
International Conference on Compiler
Construction, CC’02, LNCS, vol. 2304, pp. 1 –
4, 2002.

[23] M. Mernik, J. Heering, T. Sloane. When and
How to Develop Domain-Specific Languages.
CWI Technical Report SEN-E0309, 2003.

[24] M. Mernik, V. Žumer. Incremental
Programming Language Development.
Computer Languages, Systems and Structures,
No. 31, pp. 1 – 16, 2005.

[25] H. R. Nielson, F. Nielson. Semantics with
applications. John Wiley & Sons, 1992.

[26] J. Paakki. PROFIT: A System integrating logic
programming and attribute grammars.
Proceedings of the International Workshop on
Programming Languages Implementation and
Logic Programming, PLILP’91, pp. 243 – 254,
1991.

[27] J. Paakki. Attribute Grammar Paradigms –
A High-Level Methodology in Language
Implementation. ACM Computing Surveys,
Vol. 27, No. 2, pp. 196 – 255, 1995.

[28] F. Pereira, D. Warren. Definite Clause
Grammars for Language Analysis – A Survey

8 Prolog and Automatic Language Implementation Systems

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

of the Formalism and a Comparison with
Augmented Transition Networks. Artificial
Intelligence, Vol. 13, No. 3, pp. 231 – 278,
1980.

[29] D. A. Schmidt. Denotational Semantics:
A Methodology for Language Development.
Allyn and Bacon, 1986.

[30] D. Spinellis. Notable design patterns for
domain-specific languages. The Journal of
Systems and Software, No. 56, pp. 91 – 99,
2001.

[31] Q. Wang, G. Gupta. Rapidly Prototyping
Implementation Infrastructure of Domain-
Specific Languages: A Semantic-based
Approach. ACM Symposium on Applied
Computing, SAC'05, To appear, 2005.

[32] Q. Wang, G. Gupta. Towards Provably Correct
Code Generation via Horn Logical
Continuation Semantics. In Proceedings of the
International Symposium on Practical Aspects
of Declarative Languages, PADL'05, To
appear, 2005.

[33] D. Warren. Logic Programming and compiler
writing. Software Practice and Experience, Vol.
10, No. 2, pp. 97 – 125, 1980.

[34] D. A. Watt. Programming Language Syntax
and Semantics. Prentice Hall, 1991.

BIOGRAPHY

Marjan Mernik received his M.Sc. and Ph.D.
degrees in computer science from the University of
Maribor in 1994 and 1998 respectively. He is
currently an associate professor at the University of
Maribor, Faculty of Electrical Engineering and
Computer Science. He was a visiting professor in the
Department of Computer and Information Sciences
at the University of Alabama at Birmingham in
2004. His research interests include principles,
paradigms, design and implementation of
programming languages, compilers, formal methods
for programming language description and
evolutionary computations. He is a member of the
IEEE, ACM and EAPLS.

Matej Črepinšek received the BSc degree in
computer science at the University of Maribor,
Slovenia in 1999. He is currently a teaching assistant
at the University of Maribor, Faculty of Electrical
Engineering and Computer Science. His research for
PhD degree is concerned with grammatical
inference. His research interest in computer science
include also grammar-based systems, programming
languages and evolutionary algorithms.

