
Acta Electrotechnica et Informatica No. 2, Vol. 5, 2005 1

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

TEMPORAL LOGIC FOR POINTCUT DEFINITIONS IN AOP

Ján KOLLÁR, Marcel TÓTH
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic,
tel. +421 55 602 2577, +421 55 602 4182, E-mail: Jan.Kollar@tuke.sk, Marcel.Toth@tuke.sk

SUMMARY
The aim of this paper is to propose the use of temporal logic in dynamic weaving of advices in aspect oriented

programming (AOP), based on process functional paradigm. Namely, temporal logic appears to be well suited tool to design
pointcuts whose task is selection of join points throughout source code (static weaving) or program execution (dynamic
weaving). Because it is well known that join point model and techniques used for selecting them (pointcuts) are crucial
elements of aspect oriented programming, we tried to propose the way of better (at least we think it is better for describing
dynamic join points) pointcut formulation in terms of temporal logic. By now we have developed process functional language
(PFL), which is simple but yet powerful abstraction used to illustrate mechanisms of programming languages. PFL includes
structures and principles supporting functional, imperative and even object oriented and aspect oriented paradigms (which is
still under development), so it is multi paradigmatic language. This paper is presenting reflection as a basic property of PFL
used as a tool for weaving semantics of aspect code into original code. Code examples in this paper use PFL, but some
examples are written also in AspectJ to clarify informal semantics of its operations (particularly cflow operation, since it is
used for selecting dynamic join points).

Keywords: aspect oriented programming, dynamic join points, static weaving, dynamic weaving, temporal logic, process
functional programming

1. INTRODUCTION

Current implementations of AOP are based on
compile-time, load-time and also run-time
modification of the application code or control flow
of application. As has been observed, this whole
spectrum of binding times is needed to cover needs
of AOP [9,24,29]. Particularly, dynamic
composition (weaving) brings advantages, e.g.
adaptation of application to new runtime condition
needs without re-compiling, re-deployment and re-
starting of application [24,34].

According to characteristic of aspect-oriented
programming [5,9], the aim of AOP is clear
separation of concerns in program code or in
execution flow of the program, thus allowing better
software development in all stages of software life
cycle (not only in the implementation stage)
[13,14,15,16,17,18].

Temporal logic is the term broadly used in the
area of computer science, because with use of
temporal logic one can easily express temporal
relations between instructions and sequences of
instructions. However, temporal logic is mostly used
for program specification and verification, we can
say, for mathematical or formal representation of
software systems. Nevertheless, with respect to
long-term unification of programming languages and
paradigms as well as the convergence of formal
specifications and their refinements, our effort is to
use temporal logic for pointcuts definition in AOP.
Since pointcut’s task is to select join points in
dependence on execution flow (or control flow), we
think that temporal logic offers better apparatus for
low-level definition of pointcuts than building of
pointcuts from pre-defined blocks (pointcut
designators [4,10,23,24,34]).

2. REFLECTION IN PFL

Process functional language (PFL) is an
experimental functional programming language with
functional syntax and semantics incorporating
imperative and functional denotation [6,8,21,24].
We use PFL to formulate our ideas, to show
intended and unwanted attributes and behaviors of
our language structures propositions (and their
semantics). PFL as a functional language from its
core is advantageous to imperative languages in that
it is very transparent in its execution mechanism. All
actions in PFL are carried out through an application
of process or a function. This uniform execution
system facilitates well-arranged interception of join
points when used as a root for aspect oriented
extension. This advantage what was already tested
on profiling of PFL [25].

Let us define function f as the small example of PFL
code snippet

f :: Int -> Int -> Int
f x y = x + y

First line of code is type definition, such that both
arguments and the value of f are of the type Int
(integer numbers). Presented definition is purely
functional without use of any environment variables,
which are important part of PFL allowing inner and
outer reflection of parameters (x and y). In
addition to pure functional functions, PFL offers
processes, which can access environment variables
indirectly - exploiting the outer reflection property.
Let us explain this property using a small example.
The process f is defined, as follows:

2 Temporal Logic for Pointcut Definitions in AOP

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

f :: v Int -> v Int -> Int
f x y = x + y

and its applications are as follows:

f 2 3 (I)
f 4 () (II)
f () () (III)

The type v Int means, that the memory cell for
the environment variable v is allocated and
accessible to be used in a reflective manner. The
application (I) updates the environment variable v
with the value 2 and then with the value 3. The
process f is evaluated as the function, as follows:

f :: Int -> Int -> Int
f x y = x + y

The application (II) updates environment variable v
with the value 4 first, and then it uses the unit value
to access this variable, so it is equivalent to the
application, as follows:

f 4 4

The application (III) just accesses environment
variable v for both parameters and uses values
previously stored in environment variable v.

The inner reflection (opposite to outer reflection) is
a property of a function/process, which, when
defined using a local process, can reflect its
arguments in environment variables of this
function/process. Let us consider a definition, as
follows:

f x1 ... xn = e

where g :: T1`->...->Tm` ->T`
 g y1`...ym` = e`

If Tk` = vk Tk , where vk = xi, then the value
of xi is reflected in vk local to f.
For example, the definition of f, as follows

f x y = x + y

is semantically equivalent to the definition:

f x y = g () ()

where
g :: x Int -> y Int -> Int
g u v = u + v

Since the names for environment variables x and y
are identical to names of lambda variables of the
function f, the arguments e1 and e2 used in an
application (f e1 e2) are automatically present
in environment variables x and y and they are
accessed by application (g () ()). In the
definition below, just x lambda variable is reflected.
The environment variable z is the environment

variable local to f and external to g in which the
value of y is reflected by the application
g () y). The application (g () ()) would
yield undefined value for v, since z is not
initialized.

f x y = g () y

where
g :: x Int -> z Int -> Int
g u v = u + v

Notice also that the definition of g could be written
using x an y lambda variables, i.e. in the form

g x y = x + y

since they do not clash with neither environment
variables of g nor with the lambda variables of f.
Illustrated reflection property can be utilized for
implementation of weaving advice code to original
semantics.

3. ASPECT ORIENTED PROGRAMMING

AOP is a programming style providing
programmers with clear and transparent separation
of concerns that are problematic to isolate in existing
programming paradigms. The idea of AOP, although
quite new programming methodology, has already
demonstrated its true power through its integration
to several common imperative programming
languages. Anyway, actual AOP implementations
have several weaknesses:
• Current AOP frameworks are rather extensions

to their respective programming languages than
true integrations with them. Examples are
AspectJ, AspectC++, Spring, etc. [4,29].

• There is no effective and fully transparent way of
selecting dynamic join points and weaving in
them. There are some efforts, for example cflow
operation in AspectJ [4,5] or PROSE’s approach
to run-time dynamic weaving [24], but generally
the problem is more related to the static nature of
whole weaving mechanism than to operations
themselves.

4. STATIC VS. DYNAMIC WEAVING

AOP uses two methods of composing semantics
of aspects and semantics of original program:

• Static composition (weaving)
• Dynamic weaving

Static composition is simply accomplished by
source-to-source code transformation.
The advantages of static weaving comprise

• relatively simple implementation
• clear separating of concerns in isolated

source code segments

Acta Electrotechnica et Informatica No. 2, Vol. 5, 2005 3

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

• insignificant overhead of code execution

On the other hand dynamic composition is about

run-time composing of aspect’s semantics and
original program semantics. Dynamic composition is
very useful for debugging, profiling, and fine tuning
of existing applications, as well as for adapting of
applications to new requirements.

Dynamic weaving unlike static weaving, needs
an apparatus to which it can attach advice code (
way of identifying of join points within running
application). Virtually, some hooks in program
execution, since source code is not accessible during
program execution. Thus, dynamic composition can
be divided into two categories:

• load time approaches
• run-time approaches

It is obvious, that e.g. run-time dynamic weaving

module cannot be just simple source-to-source
transformer. Run-time dynamic weaving needs the
structures in execution flow (not in source code)
appropriate to attach an advice code.

For these reasons, the implementation of
dynamic weaving is only possible when component
code (code the advices will be woven into) has at
least one of the following properties:

• Is is written in an interpreted language
• It written is in language translated to an

intermediate form
• Program constructions are wrapped to

something with “hooks” (classes, etc.)

It is important to distinguish between the notions
of dynamic composition and dynamic set of join
points. Dynamic join points can be selected (and
thus used for weaving) with the use of just static
composition, which works with not as strong
mechanism as dynamic composition, but the solution
is reasonably simpler. Let us show one example of
dynamic join points:

sfac :: v Int -> ()
sfac x = ()

foo :: u Int -> Int
foo n = fac (sfac n; advice ()())

fac :: v Int -> Int
fac 0 = 1
fac (n + 1) = (n + 1) * fac n

main = print (fac 6 + foo 4)

advice :: u Int -> v Int -> ()
advice x y = print x ; print y

The result having been reached in the execution of
main in the example is more visible considering the
state of call stack, which is as follows:

[main]
··· evaluation of fac 6 ···
[main,fac]
 ········
[main,fac,fac,fac,fac,fac,fac]
[main,fac,fac,fac,fac,fac,fac,fac]
[main,fac,fac,fac,fac,fac,fac]
········
[main,fac]
[main]
-- evaluation of foo 4
[main,foo]
[main,foo,• fac]
[main,foo,fac,°1 fac]
[main,foo,fac,fac,°2 fac]
[main,foo,fac,fac,fac,°3 fac]
[main,foo,fac,fac,fac,fac,°4 fac]
[main,foo,fac,fac,fac,fac]
········
[main,foo]
[main]

The action (print x; print y) performed in
the join point marked by • yields 4 4, on the screen.
The same action in join point °1 would yield 4 3 on
the screen, in °2 would yields 4 2, etc., and finally
the action °4 yields 4 0. Unfortunately, join points,
marked by °1, °2, °3, and °4 cannot be selected
using static positional operations. This is, why
different selecting mechanism is needed.
According to [8], it is possible to select a superset of
dynamic join points statically, and then to weave
advices dynamically, depending on run-time
conditions.

5. TEMPORAL LOGIC

Introducing PFL language and its reflection
property and the basic AOP principles above, let us
show how temporal logic can exploited considering
process functional paradigm.

Temporal logic is an extension of ordinary logic
to include certain kinds of assertions about the time
(past or future) or operations order (in computer
science). Temporal logic is rooted in the field of
exact philosophy and is a variant of modal logic.
Modal logic deals with propositions that are
interpreted with respect to a set of possible worlds.
The truth value of propositions depends on the
respective world and basically two operations
“necessarily” and “possibly” exist which denote that
a proposition is true in all possible worlds respective
in some possible worlds. Here is one example of
world (or time) dependent expression:

“Some Man exists who Stood on the Moon“

which is equivalent to

∃ x(Mx&Sx)

4 Temporal Logic for Pointcut Definitions in AOP

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

where M and S are predicates “is Man” and “Stood
on the moon”

This is world (time) independent proposition that

always holds, which is true in this (present) world,
but not in the world one hundred years ago. If this
proposition has to consider all possible worlds, we
have to use predicate E with the reading „actually
exists“ (exists in this time, or in this world)

∃ x(Ex&Mx&Sx)

Therefore, as we can see, there is a set of
possible worlds (possibly infinite). An ordered set of
possible worlds can correspond to a temporal
sequence of states in temporal logic. In result, the
two basic modal operations “necessarily” and
“possibly” become the temporal quantifiers “always
(henceforth)” and “eventually”. Based on the
linearity of time, the additional operations like
“next” and “until” as well as “past” operations were
introduced [10,11,12]. To explain the notion of
linear time we must mention, that there are different
ways of viewing future of the present time or state,
(or possible world in modal logic), depending upon
one’s conception of the nature of time. There are
two different ways of viewing possible futures: the
theories of branching time and linear time.

In the branching time theory, all of the possible

futures are equally real (e.g. in a nondeterministic
system, the present does not determine a unique
future, but rather a set of possible futures). Thus, in
branching time theories, possible futures create the
tree of possible futures, in which every branch has
equal likelihood of happening.

In the theory of linear time, at each instant there

is only one future that will actually occur. All
assertions are interpreted as statements about that
one real future.

Depending on which theory is used, i.e. how

possible futures are considered, the semantics of
temporal operations is significantly different [10,11].
According to [11], linear time theory is more
suitable for concurrent systems and branching time
theory for non-deterministic systems. All the
temporal operations listed in this paper are
meaningful for linear time temporal logics, as
derived in [12], so we will consider this one.

6. TEMPORAL OPERATIONS

In the next table we introduce the set of temporal
operations, that formal definition and proof system
can be found in [11].

Temporal logic
operator

Description
(name)

HENCEFORTH
Eventually
HasAlways
Once
StrongNext
StrongPrevious
WeakNext

WeakPrevious

 S StrongSince
 U Until
 B WeakSince
 W WeakUntil

(unless)

Informally, their semantics is as follows (we will
use names instead of symbolic form for operators,
and prefix form for binary operators):

Henceforth P:

P holds now and will always hold in the future.

Eventually P:
P will be true sometimes in the future.

HasAlways P:

P was always true.

Once P:

P was true once in the past.

StrongNext P:

This assertion holds if there exist a previous step
and P was true in the previous step (state).
StrongNext differentiates from weak next in
requiring existence of the next state.

StrongPrevious P:

This assertion holds if there exist a next position
(state, step) and P holds there. This operator is past
equivalent of StrongNext.

StrongPrevious P

holds if P will be true in the next step. If there is
no next step, this assertion always holds, that is: last
state in the sequence satisfies StrongPrevious
P for any P.

WeakPrevious P

holds if P was true in the previous step or if there
is no previous step (state).

Since P Q

holds if P held continuously since the previous
occurrence of Q, which is guaranteed to have
happened.

Acta Electrotechnica et Informatica No. 2, Vol. 5, 2005 5

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Until P Q
holds if P holds continuously until the next

occurrence of Q, which is guaranteed to happen.

WeakSince P Q

holds at the state j if P holds continuously at all
states less than or equal to j, either to the beginning
of the sequence, or at least to the first preceding
occurrence of Q.

WeakUntil P Q

 holds at some position (state), if P holds
continuously at all positions greater or equal to this
position (state), either to the end of sequence, or at
least to the first occurrence of Q.

In the following, we will use just Once operator,
designating it by ♦, and StrongPrevious
operator designating it by ●.

It is true, that every operation is derivable from
the basic set of them, but this fact is not important
for what we want to show. For full-range definitions,
theorems, rules and whole proof systems, we
recommend [10,11,12,20,21,23,30].

7. TEMPORAL OPERATIONS IN

DEFINITION OF POINTCUTS

In the following lines, we are going to reason
about what temporal operations (if any) could be
useful in pointcut definitions. There is a strong
feeling that at least semantics of some temporal
operations is suitable for pointcut designators
definition. We will show why pointcut designator
definition is useful and how it can help on the
simplified example of AspectJ’s cflow operation [4]:

Pointcut matchF():
 call (* f(..)) &&
 cflow (call (* one (..)) &&
 call(* two (..)));

Here we find the matchF pointcut, where a

match is made against a method f() (with any
parameters, any type and any returning value). Since
cflow is execution flow operation, then by
combining calls to both one() and two() in the
same cflow operation we tell the system to match
only when f() method occurs in the execution flow
of both one() and two() methods. The only way
the execution can occur in both methods is when the
one() method calls two() method or the two()
method calls the one() method. Let us say that the
sign => means “calls”, then there are two potential
options of execution flow that will our pointcut
matchF match:

one() => two() => f()

or

two() => one() => f()

The problem is, that if both execution flows
occur in the program (and we want to match just one
of them), we are not able to tell the system, which of
these two options is the right one for us. Since we
know the temporal logic is the logic for expressing
order in sequences of states, we can use this piece of
knowledge. At this point we can see the benefit of
the use of temporal operations: clear and transparent
selection of operations order in execution flow, that
is, which joinpoint should occur first and which
later. As we have mentioned already, PFL language
that we have developed suits our needs very well.
Particularly, in PFL as well as in all functional
languages, everything is an application of function
(or process). In imperative languages, there are
many syntactic construcs requiring many kinds of
pointcut designators (for efficient AOP weaving
mechanism), with rather different semantics, which
is not uniform core, that we need. Then we can
exploit uniformity of functional language (as we
mentioned before, PFL’s reflection offers also
imperative semantics, so we are not losing anything)
to transparent selection of join points. Our aim is to
define dynamic pointcut designators, in the form

on event
 event based pattern

To make it the simplest possible way, let us suppose
that desired events are:

• start of function (process) evaluation
• end of function (process) evaluation

Expressed in way that is more formal:

start(f) - event of starting of function f
evaluation

end(f) – event of finishing of function f
evaluation

These are the most important events in the
execution of PFL program. The question is, which of
temporal operations are the expressive enough to
solve our problem. As long as the program runs (is
evaluated), it is easy to use states or values already
evaluated, so past part of temporal logic (operations)
will facilitate the task more than future fragment of
temporal logic (at least, it is more conceivable to
relate our expressions to something that already
happened, than to something that is still unsure to
happen). We will use two temporal operations now,
to propose ideas for later research:

♦ – once in the past
● – strong previous

The use of ♦ operation is without any problems. On
the other hand, ● operation is not real time
operation, but rather the operation for expressing
discrete instants. In program execution, ● could

6 Temporal Logic for Pointcut Definitions in AOP

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

mean an instruction, which was executed right
before currently executed instruction. So far, we
have considered just events of starting and ending of
function evaluation. Now, let us consider every
event as a state change. Hence, the state sequence is
just the sequence of events start(f) and
end(f). This simplification enables the use of
operation ●.

We will show below, how to express the phases
of evaluation of function f using temporal operation
♦ (once in the past).

[♦(start(f))] ∧ [⌐♦(end(f))] (1)

i.e., the execution flow is in the function f right now
(function f is being evaluated).

The assertion (1) states this: Once in the past, it was
true, that event of starting of function f occurred. In
addition, it is not true that once in the past event of
finishing of function f evaluation occurred.
Therefore, we are in evaluation of function f now.

[♦ (start(f))] ∧ [♦ (end(f))] (2)

 i.e. the function f was evaluated already (in the
past).

This means, that the event start(f) occurred as
well as the event of end(f), what stands for
finished function f execution

[⌐♦ (start(f))] ∧ [⌐♦ (end(f))] (3)

The assertion (3) means, that neither the event
start(f) happened, nor the event end(f). The
evaluation (execution) of function f has not started
and has not finished too.

All the assertions above recognize where in
execution flow of f is the present time. We can label
cases (1), (2), and (3) by temporal predicates

1. in (f)
2. done (f)
3. prior (f)

In the meaning of these predicates and the temporal
operation ● (previous) we can state:

[in(f)] ∧ [● ⌐in(f)] (4)

According (4) the execution is in the execution flow
of f now, but in the previous step (before some
event came) the execution wasn’t in the execution
flow of f. So the result is, that evaluation (execution)
just started (in this step).

In comparison with AspectJ cflow operation, we

are now able to express the same, and even more. In
implementation of the event functions (start(f)

and end(f)) in PFL we are able to easily get time of
event occurrence, what can be used e.g. for
definition of the pointcut as follows

[in(f) ∧ in(g)] ∧ [start(f) < start(g)] (5)

i.e. the execution flow is in g which is called from f

The (5) assertion (we can say also pointcut) solves
the problem of cflow (in matchF above), where we
were able to express that we want to select
instructions (or join points) in execution flow of
both f and g functions, but we were not able to say
which is called from which. Certainly we could use
within pointcut designator, but it comprises only
static join points and does not select calls to function
from another function.

8. CONCLUSION

In this paper, we have presented briefly the
reflection property of PFL language, since it is our
aim to exploit it in weaving aspects into original
code. The main goal of this paper was to introduce
the style in which temporal logic can be exploited
for pointcut definitions, without focussing to
detailed language constructs coming out from this
approach so far. In particular, ww have shown, that
temporal logic provide an opportunity for a very
expressive definitions of pointcut expressions,
because it allows composing of pointcut designators
from elementary temporal operations and basic
events in process functional (which composes purely
functional and imperative) program evaluation.
Supporting software engineering approaches based
on object paradigm, such as in [1,2,3], by object
process functional paradigm [31,32,33] comes out
from imperative functional programming [22].
Although the basis of process functional language is
environmental [7], this does not destruct a purely
functional principle of performing imperative
computation by the application, instead of
performing statements in less-disciplined imperative
manner. This paper is a step to the detailed
identification of circumstances in computation,
which may occur in visualisation [26], planning
parallel tasks [27,28], and many others. Essentially,
the reflection property and a uniform structure of
process functional language supports the idea of
integrating formal and software engineering
approaches in AOP.

REFERENCES

[1] Beneš, M., Kružel, M., Vondrák, I.: A Process

Description Language. In Proc. of 34th Spring
International Conference ISM 2000,
Ostrava:MARQ, 2000, ACTA MOSIS No. 80,
pp. 157-162, ISBN 80-85988-45-3

[2] Beneš, M.: Data Types In Persistent Object
Systems. In Transactions of the VŠB-Technical

Acta Electrotechnica et Informatica No. 2, Vol. 5, 2005 7

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

University of Ostrava. Ed. Prof. Ing. Jaromír
Polák, CSc., Ostrava: VŠB-TU Ostrava, 2001,
Vol. 1, No. 1, Computer Science and
Mathematics, pp. 1-10, VŠB-TU Ostrava, ISSN
1213-4279

[3] Beneš, M.: Multiple Inheritance. In
Proceedings of ISM'98 Conference,
Ostrava:MARQ, 1998, 9-14, ISBN 80-85988-
24-0

[4] Kiczales, G. et al: An overview of AspectJ. In
proceedings European Conference on Object-
Oriented Programming, Vol. 2072 of Lecture
Notes in Computer Science, 2072:327-355,
2001, pp. 327-353.

[5] Kiczales, G. et al: Aspect-oriented pro-
gramming. In Mehmet Aksit and Satoshi
Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of
LNCS, pp. 220-242, 1997.

[6] Kienzle, J. and Guerraoui, R.: Aspect oriented
software development AOP: Does it make
sense? The case of concurrency and failures. In
B. Magnusson, editor, Proc. ECOOP 2002,
pages 37-61. Springer Verlag, June 2002.

[7] Kollár, J., Václavík, P., Porubän, J.: The
Classification of Programming Environments,
Acta Universitatis Matthiae Belii, 10, 2003, pp.
51-64, ISBN 80-8055-662-8

[8] Kollár, J.: Static weaving at dynamic join
points, 2004.

[9] Kollár, J.: Process Functional Programming,
Proc. ISM'99, Rožnov pod Radhoštěm, Czech
Republic, April 27-29, 1999, pp. 41-48.

[10] Lamport, Leslie: The temporal logic of actions,
ACM Transactions on Programming
Languages and Systems, ACM Press, 1994, pp.
872-923.

[11] Lamport, Leslie: “SOMETIME” is sometimes
“NOT NEVER”, Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles
of programming languages, ACM Press, 1980,
pp. 174 – 185.

[12] Manna, Z., Pnueli, A.: The Anchored Version
of the Temporal Framework, Lecture Notes in
Computer Science vol. 354, Sringer-Verlag,
London, 1988, pp. 201-284.

[13] Mernik Marjan, Korbar Nikolaj, Zumer Viljem:
LISA: A Tool for Automatic Language
Implementation. ACM SIGPLAN Notices, Vol.
30, No. 4, 1995, pp. 71 - 79, ISSN 0362-1340

[14] Mernik Marjan, Lenic Mitja, Avdicausevic
Enis, Zumer Viljem. Multiple attribute
grammar inheritance. Informatica, 2000, Vol.
24, No. 3, pp. 319-328.

[15] Mernik Marjan, Zumer Viljem, Lenic Mitja,
Avdicausevic Enis. Implementation of multiple
attribute grammar inheritance in the tool LISA.
ACM SIGPLAN not., June 1999, Vol. 34, No.
6, pp. 68-75.

[16] Mernik Marjan, Zumer Viljem: Implementation
of Denotational Semantics. INFORMATICA
1/91, Vol. 15, No. 1, 1991, pp. 48 - 53, ISSN
0350-5596

[17] Mernik Marjan, Zumer Viljem: Operational
Semantics of LISP Subset. AMSE transactions,
Tassin-la-Demi-Lune, Vol. 17, No. 4, 1993, pp
49 - 55, ISSN 0761-2532

[18] Mernik, Marjan, Lenic Mitja, Avdicausevic
Enis, Zumer Viljem. A reusable object-oriented
approach to formal specifications of
programming languages. L'Objet, 1998, Vol. 4,
No. 3, pp. 273-306.

[19] Mostýn, V., Skařupa, J.: Improving mechanical
model accuracy for simulation purposes.
Journal Mechatronics, Volume 14, Issue 7,
September 2004, GB, Oxford: Elsevier Ltd.,
2004, s. 777-787; ISSN 0957-4158

[20] Owicki, S., Lamport, L.: Proving liveness
properties of concurrent programs. ACM
Transactions on Programming Languages and
Systems, 4 (3): 455–495, July 1982.

[21] Ostroff, S. J.: Temporal logic for real time
systems, John Wiley & Sons, Inc, ISBN 0-471-
92402-4, 1989.

[22] Peyton Jones, S.L., Wadler, P.: Imperative
functional programming, In 20th Annual
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
January 1993, pp. 71-84.

[23] Pnueli, Amir: The temporal logic of programs.
In Proceedings of the 18th Symposium on the
Foundations of Computer Science, pages 46–
57. ACM, November 1977.

[24] Popovici, A., Gross, T., Alonso, G.: Dynamic
Weaving for Aspect-Oriented Programming,
ACM, ISBN: 1-58113-469-X, 2002, pp. 141-
147.

[25] Porubän, J.: Time and space profiling for
process functional language, Proceeding of the
7th Scientific Conference with International
Participation: Engineering of Modern Electric
'03 Systems, May 29-31, 2003, Felix Spa -
Oradea, University of Oradea, 2003, pp. 167-
172, ISSN-1223-2106

[26] Šaloun, P.: Simulation and Visualization of
Parsing, In proceedings of MOSIS ´97, 31th
International conference Modelling and
Simulation of Systems, part 2, Czech Republic,
Hradec nad Moravicí, 1997, pp. 25-29.

[27] Škrinárová, J., Siládi, V.: The design of
planning algorithm for multiprocessor system
MUPRO. DIDINFO 2003, Banská Bystrica,
2003. ISBN 80-8055-786-1, pp. 118-120. (in
Slovak)

[28] Škrinárová, J.: Parallel programming.
DIDINFO 2004. Banská Bystrica, 2004. ISBN
80-8055-908-2, pp. 143-146. (in Slovak)

[29] Sullivan, G. T.: Aspect-oriented Programming

8 Temporal Logic for Pointcut Definitions in AOP

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

using Reflection, Workshop of Advanced
Separation of Concerns in Object-Oriented
systems, MIT Press, 2001.

[30] Tuzhilin Alexander: Templar: A Knowledge-
Based Language for Software Specifications
Using Temporal Logic, ACM Transactions on
Information Systems (TOIS), 1995, pp. 269-
304.

[31] Václavík, P., Porubän, J.: Object Oriented
Approach in Process Functional Language,
Proceedings of the Fifth International Scientific
Conference „Electronic Computers and
Informatics´2002“, October 10-11, 2002,
Košice - Herľany, pp. 92-96, ISBN 80-7099-
879-2

[32] Václavík, P.: Abstract types and their
implementation in a processs functional
programming language. Research report DCI
FEI TU Košice, 2002, 48 pp. (in Slovak)

[33] Václavík, P.: The Fundamentals of a Process
Functional Abstract Type Translation,
Proceeding of the 7th Scientific Conference
with International Participation: Engineering of
Modern Electric '03 Systems, May 29-31,
2003, Felix Spa - Oradea, University of
Oradea, 2003, pp. 193-198, ISSN-1223-2106

[34] Wand, M.: A semantics for advice and dynamic
join points in aspect-oriented programming.
Lecture Notes in Computer Science, 2196:45-
57, 2001.

BIOGRAPHY

Ján Kollár was born in 1954. He received his MSc.
summa cum laude in 1978 and his PhD. in
Computing Science in 1991. In 1978-1981, he was
with the Institute of Electrical Machines in Košice.
In 1982-1991, he was with the Institute of Computer
Science at the University of P.J. Šafárik in Košice.
Since 1992, he is with the Department of Computers
and Informatics at the Technical University of
Košice. In 1985, he spent 3 months in the Joint
Institute of Nuclear Research in Dubna, Soviet
Union. In 1990, he spent 2 month at the Department
of Computer Science at Reading University, Great
Britain. He was involved in the research projects
dealing with the real-time systems, the design of
(micro) programming languages, image processing
and remote sensing, the dataflow systems, the
educational systems, and the implementation of
functional programming languages. Currently the
subject of his research is process functional
paradigm and its application in high performance
computing and aspect programming.

Marcel Tóth was born in 1981. He graduated at
Technical university of Košice, Slovakia. He is
working on his PhD. degree at the Department of
Computers and Informatics FEII Technical
university of Košice, Slovakia. His scientific
research is focusing on the aspect oriented
programming paradigm, especially on dynamic
composition in aspect-oriented programming.

