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SUMMARY 
The aim of this paper is to propose the use of temporal logic in dynamic weaving of advices in aspect oriented 

programming (AOP), based on process functional paradigm. Namely, temporal logic appears to be well suited tool to design 
pointcuts whose task is selection of join points throughout source code (static weaving) or program execution (dynamic 
weaving). Because it is well known that join point model and techniques used for selecting them (pointcuts) are crucial 
elements of aspect oriented programming, we tried to propose the way of better (at least we think it is better for describing 
dynamic join points) pointcut formulation in terms of temporal logic. By now we have developed process functional language 
(PFL), which is simple but yet powerful abstraction used to illustrate mechanisms of programming languages. PFL includes 
structures and principles supporting functional, imperative and even object oriented and aspect oriented paradigms (which is 
still under development), so it is multi paradigmatic language. This paper is presenting reflection as a basic property of PFL 
used as a tool for weaving semantics of aspect code into original code. Code examples in this paper use PFL, but some 
examples are written also in AspectJ to clarify informal semantics of its operations (particularly cflow operation, since it is 
used for selecting dynamic join points). 
 
Keywords: aspect oriented programming, dynamic join points, static weaving, dynamic weaving, temporal logic, process 
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1. INTRODUCTION 
 

Current implementations of AOP are based on 
compile-time, load-time and also run-time 
modification of the application code or control flow 
of application. As has been observed, this whole 
spectrum of binding times is needed to cover needs 
of AOP [9,24,29]. Particularly, dynamic 
composition (weaving) brings advantages, e.g. 
adaptation of application to new runtime condition 
needs without re-compiling, re-deployment and re-
starting of application [24,34].  

According to characteristic of aspect-oriented 
programming [5,9], the aim of AOP is clear 
separation of concerns in program code or in 
execution flow of the program, thus allowing better 
software development in all stages of software life 
cycle (not only in the implementation stage) 
[13,14,15,16,17,18].  

Temporal logic is the term broadly used in the 
area of computer science, because with use of 
temporal logic one can easily express temporal 
relations between instructions and sequences of 
instructions. However, temporal logic is mostly used 
for program specification and verification, we can 
say, for mathematical or formal representation of 
software systems. Nevertheless, with respect to 
long-term unification of programming languages and 
paradigms as well as the convergence of formal 
specifications and their refinements, our effort is to 
use temporal logic for pointcuts definition in AOP. 
Since pointcut’s task is to select join points in 
dependence on execution flow (or control flow), we 
think that temporal logic offers better apparatus for 
low-level definition of pointcuts than building of 
pointcuts from pre-defined blocks (pointcut 
designators [4,10,23,24,34]). 

2. REFLECTION IN PFL 
 

Process functional language (PFL) is an 
experimental functional programming language with 
functional syntax and semantics incorporating 
imperative and functional denotation [6,8,21,24]. 
We use PFL to formulate our ideas, to show 
intended and unwanted attributes and behaviors of 
our language structures propositions (and their 
semantics). PFL as a functional language from its 
core is advantageous to imperative languages in that 
it is very transparent in its execution mechanism. All 
actions in PFL are carried out through an application 
of process or a function. This uniform execution 
system facilitates well-arranged interception of join 
points when used as a root for aspect oriented 
extension. This advantage what was already tested 
on profiling of PFL [25]. 
 
Let us define function f as the small example of PFL 
code snippet 
 
f :: Int -> Int -> Int 
f x y = x + y 
 
First line of code is type definition, such that both 
arguments and the value of f are of the type Int 
(integer numbers). Presented definition is purely 
functional without use of any environment variables, 
which are important part of PFL allowing inner and 
outer reflection of parameters (x and y). In 
addition to pure functional functions, PFL offers 
processes, which can access environment variables 
indirectly - exploiting the outer reflection property. 
Let us explain this property using a small example. 
The process f is defined, as follows: 



2 Temporal Logic for Pointcut Definitions in AOP 

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

f :: v Int -> v Int -> Int 
f x y = x + y 
 
and its applications are as follows: 
 

f 2 3    (I) 
f 4 ()   (II) 
f () ()   (III) 

 
The type v Int  means, that the memory cell for 
the environment variable v is allocated and 
accessible to be used in a reflective manner. The 
application (I) updates the environment variable v 
with the value 2 and then with the value 3. The 
process f is evaluated as the function, as follows: 
 
f :: Int -> Int -> Int 
f x y = x + y 
 
The application (II) updates environment variable v 
with the value 4 first, and then it uses  the unit value 
to access this variable, so it is equivalent to the 
application, as follows: 
 

f 4 4 
 
The application (III) just accesses environment 
variable v for both parameters and uses values 
previously stored in environment variable v. 
 
The inner reflection (opposite to outer reflection) is 
a property of a function/process, which, when 
defined using a local process, can reflect its 
arguments in environment variables of this 
function/process. Let us consider a definition, as 
follows: 
 
f x1 ... xn = e 

where g :: T1`->...->Tm` ->T` 
 g y1`...ym` = e`  
 
If  Tk` = vk  Tk , where vk = xi, then the value 
of xi is reflected in vk local to f. 
For example, the definition of f, as follows 
 
f x y = x + y 
 
is semantically equivalent to the definition: 
 
f x y = g () () 

where 
g :: x Int -> y Int -> Int 
g u v = u + v 

 
Since the names for environment variables x and y 
are identical to names of lambda variables of the 
function f, the arguments e1 and e2 used in an 
application (f e1 e2) are automatically present 
in environment variables x and y and they are 
accessed by application (g () ()). In the 
definition below, just x lambda variable is reflected. 
The environment variable z is the environment 

variable local to f and external to g in which the 
value of y is reflected by the application 
g () y). The application (g () ()) would 
yield undefined value for v, since z is not 
initialized. 
 
f x y = g () y 

where 
g :: x Int -> z Int -> Int 
g u v = u + v 

 
Notice also that the definition of g could be written 
using x an y lambda variables, i.e. in the form 
 
g x y = x + y 
 
since they do not clash with neither environment 
variables of g nor with the lambda variables of f. 
Illustrated reflection property can be utilized for 
implementation of weaving advice code to original 
semantics. 
 
 
3. ASPECT ORIENTED PROGRAMMING 
 

AOP is a programming style providing 
programmers with clear and transparent separation 
of concerns that are problematic to isolate in existing 
programming paradigms. The idea of AOP, although 
quite new programming methodology, has already 
demonstrated its true power through its integration 
to several common imperative programming 
languages. Anyway, actual AOP implementations 
have several weaknesses: 
• Current AOP frameworks are rather extensions 

to their respective programming languages than 
true integrations with them. Examples are 
AspectJ, AspectC++, Spring, etc. [4,29]. 

• There is no effective and fully transparent way of 
selecting dynamic join points and weaving in 
them. There are some efforts, for example cflow 
operation in AspectJ  [4,5] or PROSE’s approach 
to run-time dynamic weaving [24], but generally 
the problem is more related to the static nature of 
whole weaving mechanism than to operations 
themselves. 
 
 

4. STATIC VS. DYNAMIC WEAVING 
 

AOP uses two methods of composing semantics 
of aspects and semantics of original program: 
 

• Static composition (weaving) 
• Dynamic weaving 
 

Static composition is simply accomplished by 
source-to-source code transformation. 
The advantages of static weaving comprise  
 

• relatively simple implementation 
• clear separating of concerns in isolated 

source code segments  
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• insignificant overhead of code execution 
 
On the other hand dynamic composition is about 

run-time composing of aspect’s semantics and 
original program semantics. Dynamic composition is 
very useful for debugging, profiling, and fine tuning 
of existing applications, as well as for adapting of 
applications to new requirements.  
 

Dynamic weaving unlike static weaving, needs 
an apparatus to which it can attach advice code ( 
way of identifying of join points within running 
application). Virtually, some hooks in program 
execution, since source code is not accessible during 
program execution. Thus, dynamic composition can 
be divided into two categories: 
 

• load time approaches 
• run-time approaches 

 
It is obvious, that e.g. run-time dynamic weaving 

module cannot be just simple source-to-source 
transformer. Run-time dynamic weaving needs the 
structures in execution flow (not in source code) 
appropriate to attach an advice code. 

For these reasons, the implementation of 
dynamic weaving is only possible when component 
code (code the advices will be woven into) has at 
least one of the following properties: 

 
• Is is written in an interpreted language 
• It written is in language translated to an 

intermediate form 
• Program constructions are wrapped to 

something with “hooks” (classes, etc.) 
 

It is important to distinguish between the notions 
of dynamic composition and dynamic set of join 
points. Dynamic join points can be selected (and 
thus used for weaving) with the use of just static 
composition, which works with not as strong 
mechanism as dynamic composition, but the solution 
is reasonably simpler. Let us show one example of 
dynamic join points: 

 
sfac :: v Int -> () 
sfac x = () 
 
foo :: u Int -> Int 
foo n = fac (sfac n; advice ()()) 
 
fac :: v Int -> Int 
fac 0 = 1 
fac (n + 1) = (n + 1) * fac n 
 
main = print (fac 6 + foo 4) 
 
advice :: u Int -> v Int -> () 
advice x y = print x ; print y  

 
The result having been reached in the execution of 
main in the example is more visible considering the 
state of call stack, which is as follows: 

[main] 
··· evaluation of fac 6 ··· 
[main,fac] 
 ········  
[main,fac,fac,fac,fac,fac,fac] 
[main,fac,fac,fac,fac,fac,fac,fac] 
[main,fac,fac,fac,fac,fac,fac] 
········  
[main,fac] 
[main] 
-- evaluation of foo 4 
[main,foo] 
[main,foo,• fac] 
[main,foo,fac,°1 fac] 
[main,foo,fac,fac,°2 fac] 
[main,foo,fac,fac,fac,°3 fac] 
[main,foo,fac,fac,fac,fac,°4 fac] 
[main,foo,fac,fac,fac,fac] 
········  
[main,foo] 
[main] 

 
 

The action (print x; print y) performed in 
the join point marked by • yields 4 4, on the screen.  
The same action in join point °1 would yield 4 3 on 
the screen, in  °2 would yields 4 2, etc., and finally 
the action °4 yields 4 0.  Unfortunately, join points, 
marked by °1, °2, °3, and °4 cannot be selected 
using static positional operations. This is, why 
different selecting mechanism is needed. 
According to [8], it is possible to select a superset of 
dynamic join points statically, and then to weave 
advices dynamically, depending on run-time 
conditions. 
 
 
5. TEMPORAL LOGIC 
 

Introducing PFL language and its reflection 
property and the basic AOP principles above, let us 
show how temporal logic can exploited considering 
process functional paradigm. 

Temporal logic is an extension of ordinary logic 
to include certain kinds of assertions about the time 
(past or future) or operations order (in computer 
science). Temporal logic is rooted in the field of 
exact philosophy and is a variant of modal logic. 
Modal logic deals with propositions that are 
interpreted with respect to a set of possible worlds. 
The truth value of propositions depends on the 
respective world and basically two operations 
“necessarily” and “possibly” exist which denote that 
a proposition is true in all possible worlds respective 
in some possible worlds. Here is one example of 
world (or time) dependent expression:  
 

“Some Man exists who Stood on the Moon“ 
 
which is equivalent to 
 

∃ x(Mx&Sx) 
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where M and S are predicates “is Man” and “Stood 
on the moon” 

 
This is world (time) independent proposition that 

always holds, which is true in this (present) world, 
but not in the world one hundred years ago. If this 
proposition has to consider all possible worlds, we 
have to use predicate E with the reading „actually 
exists“ (exists in this time, or in this world) 
 

∃ x(Ex&Mx&Sx) 
 

Therefore, as we can see, there is a set of 
possible worlds (possibly infinite). An ordered set of 
possible worlds can correspond to a temporal 
sequence of states in temporal logic. In result, the 
two basic modal operations “necessarily” and 
“possibly” become the temporal quantifiers “always 
(henceforth)” and “eventually”. Based on the 
linearity of time, the additional operations like 
“next” and “until” as well as “past” operations were 
introduced [10,11,12]. To explain the notion of 
linear time we must mention, that there are different 
ways of viewing future of the present time or state,  
(or possible world in modal logic), depending upon 
one’s conception of the nature of time. There are 
two different ways of viewing possible futures: the 
theories of branching time and linear time. 

 
In the branching time theory, all of the possible 

futures are equally real (e.g. in a nondeterministic 
system, the present does not determine a unique 
future, but rather a set of possible futures). Thus, in 
branching time theories, possible futures create the 
tree of possible futures, in which every branch has 
equal likelihood of happening.  

 
In the theory of linear time, at each instant there 

is only one future that will actually occur. All 
assertions are interpreted as statements about that 
one real future.  

 
Depending on which theory is used, i.e. how 

possible futures are considered, the semantics of 
temporal operations is significantly different [10,11]. 
According to [11], linear time theory is more 
suitable for concurrent systems and branching time 
theory for non-deterministic systems. All the 
temporal operations listed in this paper are 
meaningful for linear time temporal logics, as 
derived in [12], so we will consider this one. 
 
 
6. TEMPORAL OPERATIONS 
 

In the next table we introduce the set of temporal 
operations, that formal definition and proof system 
can be found in [11].  
 
 
 
 
 

Temporal logic  
operator 

Description 
(name) 

HENCEFORTH 
Eventually 
HasAlways 
Once 
StrongNext 
StrongPrevious 
WeakNext 

 

WeakPrevious 

   S StrongSince 
   U Until 
   B WeakSince 
   W WeakUntil 

(unless) 
 

Informally, their semantics is as follows (we will 
use names instead of symbolic form for operators, 
and prefix form for binary operators): 
 
Henceforth P:  

P holds now and will always hold in the future. 
 

Eventually P:  
P will be true sometimes in the future. 

 
HasAlways P:  

P was always true. 
 
Once P:  

P was true once in the past. 
 
StrongNext P:  

This assertion holds if there exist a previous step 
and P was true in the previous step (state). 
StrongNext differentiates from weak next in 
requiring existence of the next state. 
 
StrongPrevious P:  

This assertion holds if there exist a next position 
(state, step) and P holds there. This operator is past 
equivalent of StrongNext. 
 
StrongPrevious P 

holds if P will be true in the next step. If there is 
no next step, this assertion always holds, that is: last 
state in the sequence satisfies StrongPrevious 
P  for any P. 
 
WeakPrevious  P 

holds if P was true in the previous step or if there 
is no previous step (state).  
 
Since P Q 

holds if P  held continuously since the previous 
occurrence of Q, which is guaranteed to have 
happened. 
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Until P Q 
holds if P holds continuously until the next 

occurrence of Q, which is guaranteed to happen. 
 
WeakSince P Q 

holds at the state j if P holds continuously at all 
states less than or equal to j, either to the beginning 
of the sequence, or at least to the first preceding 
occurrence of Q. 
 
WeakUntil P Q 

 holds at some position (state), if P holds 
continuously at all positions greater or equal to this 
position (state), either to the end of sequence, or at 
least to the first occurrence of Q. 
 

In the following, we will use just Once operator, 
designating it by ♦, and StrongPrevious 
operator designating it by ●. 
 

It is true, that every operation is derivable from 
the basic set of them, but this fact is not important 
for what we want to show. For full-range definitions, 
theorems, rules and whole proof systems, we 
recommend [10,11,12,20,21,23,30]. 
 
 
7. TEMPORAL OPERATIONS IN 

DEFINITION OF POINTCUTS 
 

In the following lines, we are going to reason 
about what temporal operations (if any) could be 
useful in pointcut definitions. There is a strong 
feeling that at least semantics of some temporal 
operations is suitable for pointcut designators 
definition. We will show why pointcut designator 
definition is useful and how it can help on the 
simplified example of AspectJ’s cflow operation [4]: 
 
Pointcut matchF(): 
    call ( * f(..) ) &&  
    cflow ( call ( * one (..) ) && 
            call( * two (..) ) ); 

 
Here we find the matchF pointcut, where a 

match is made against a method f() (with any 
parameters, any type and any returning value). Since 
cflow is execution flow operation, then by 
combining calls to both one() and two() in the 
same cflow operation we tell the system to match 
only when f() method occurs in the execution flow 
of both one() and  two() methods. The only way 
the execution can occur in both methods is when the 
one() method calls two() method or the two() 
method calls the one() method. Let us say that the 
sign => means “calls”, then there are two potential 
options of execution flow that will our pointcut 
matchF match: 

 
one() => two() => f() 

 
or 

two() => one() => f() 
 

The problem is, that if both execution flows 
occur in the program (and we want to match just one 
of them), we are not able to tell the system, which of 
these two options is the right one for us. Since we 
know the temporal logic is the logic for expressing 
order in sequences of states, we can use this piece of 
knowledge. At this point we can see the benefit of 
the use of temporal operations: clear and transparent 
selection of operations order in execution flow, that 
is, which joinpoint should occur first and which 
later. As we have mentioned already, PFL language 
that we have developed suits our needs very well. 
Particularly, in PFL as well as in all functional 
languages, everything is an application of function 
(or process). In imperative languages, there are 
many syntactic construcs requiring many kinds of 
pointcut designators (for efficient AOP weaving 
mechanism), with rather different semantics, which 
is not uniform core, that we need. Then we can 
exploit uniformity of functional language (as we 
mentioned before, PFL’s reflection offers also 
imperative semantics, so we are not losing anything) 
to transparent selection of join points. Our aim is to 
define dynamic pointcut designators, in the form  
 

on event 
 event based pattern 

 
To make it the simplest possible way, let us suppose 
that desired events are: 
 

• start of function (process) evaluation 
• end of function (process) evaluation 
 

Expressed in way that is more formal: 
 

start(f) - event of starting of function f 
evaluation 

end(f) – event of finishing of function f 
evaluation 
 

These are the most important events in the 
execution of PFL program. The question is, which of 
temporal operations are the expressive enough to 
solve our problem. As long as the program runs (is 
evaluated), it is easy to use states or values already 
evaluated, so past part of temporal logic (operations) 
will facilitate the task more than future fragment of 
temporal logic (at least, it is more conceivable to 
relate our expressions to something that already 
happened, than to something that is still unsure to 
happen). We will use two temporal operations now, 
to propose ideas for later research: 

 
♦ – once in the past 
● – strong previous 

 
The use of ♦ operation is without any problems. On 
the other hand, ● operation is not real time 
operation, but rather the operation for expressing 
discrete instants. In program execution, ● could 
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mean an instruction, which was executed right 
before currently executed instruction. So far, we 
have considered just events of starting and ending of 
function evaluation. Now, let us consider every 
event as a state change. Hence, the state sequence is 
just the sequence of events start(f) and 
end(f). This simplification enables the use of 
operation ●. 

We will show below, how to express the phases 
of evaluation of function f using temporal operation 
♦ (once in the past). 

 
[♦(start(f))] ∧ [⌐♦(end(f))]      (1) 
 
i.e., the execution flow is in the function f right now 
(function f is being evaluated). 

 
The assertion (1) states this: Once in the past, it was 
true, that event of starting of function f occurred. In 
addition, it is not true that once in the past event of 
finishing of function f evaluation occurred. 
Therefore, we are in evaluation of function f now. 

 
[♦ ( start(f) ) ] ∧ [♦ ( end(f) ) ]                             (2) 
 
 i.e. the function f was evaluated already (in the 
past). 

 
This means, that the event start(f) occurred as 
well as the event of end(f), what stands for 
finished function f execution 
 
[⌐♦ ( start(f) ) ] ∧ [⌐♦ ( end(f) ) ]                          (3) 

 
The assertion (3) means, that neither the event 
start(f) happened, nor the event end(f). The 
evaluation (execution) of function f has not started 
and has not finished too. 
 
All the assertions above recognize where in 
execution flow of f is the present time. We can label 
cases (1), (2), and (3) by temporal predicates  
 

1. in (f) 
2. done (f) 
3. prior (f) 

 
In the meaning of these predicates and the temporal 
operation ● (previous) we can state: 
 
[ in(f) ] ∧ [ ● ⌐in(f) ]                                               (4) 

 
According (4) the execution is in the execution flow 
of f now, but in the previous step (before some 
event came) the execution wasn’t in the execution 
flow of f. So the result is, that evaluation (execution) 
just started (in this step). 

 
In comparison with AspectJ cflow operation, we 

are now able to express the same, and even more. In 
implementation of the event functions (start(f) 

and end(f)) in PFL we are able to easily get time of 
event occurrence, what can be used e.g. for 
definition of the pointcut as follows 

 
[ in(f) ∧ in(g) ] ∧ [ start(f) < start(g) ]                   (5) 
 
i.e. the execution flow is in g which is called from f 
 
The (5) assertion (we can say also pointcut) solves 
the problem of cflow (in matchF above), where we 
were able to express that we want to select 
instructions (or join points) in execution flow of 
both f and g functions, but we were not able to say 
which is called from which. Certainly we could use 
within pointcut designator, but it comprises only 
static join points and does not select calls to function 
from another function. 
 
 
8. CONCLUSION 
  

In this paper, we have presented briefly the 
reflection property of PFL language, since it is our 
aim to exploit it in weaving aspects into original 
code. The main goal of this paper was to introduce 
the style in which temporal logic can be exploited 
for pointcut definitions, without focussing to 
detailed language constructs coming out from this 
approach so far. In particular, ww have shown, that 
temporal logic provide an opportunity for a very 
expressive definitions of pointcut expressions, 
because it allows composing of pointcut designators 
from elementary temporal operations and basic 
events in process functional (which composes purely 
functional and imperative) program evaluation. 
Supporting software engineering approaches based 
on object paradigm, such as in [1,2,3], by object 
process functional paradigm [31,32,33] comes out 
from imperative functional programming [22]. 
Although the basis of process functional language is 
environmental [7], this does not destruct a purely 
functional principle of performing imperative 
computation by the application, instead of 
performing statements in less-disciplined imperative 
manner. This paper is a step to the detailed 
identification of circumstances in computation, 
which may occur in visualisation [26], planning 
parallel tasks [27,28], and many others. Essentially, 
the reflection property and a uniform structure of 
process functional language supports the idea of 
integrating formal and software engineering 
approaches in AOP. 
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