
Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 5

A NOTE ON ASPECT, ASPECT-ORIENTED AND
DOMAIN-SPECIFIC LANGUAGES

Marjan MERNIK, Toma� KOSAR, Viljem �UMER
Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, 2000 Maribor, Slovenia, tel. (+386 2) 220 7455
E-mail: marjan.mernik@uni-mb.si, tomaz.kosar@uni-mb.si, zumer@uni-mb.si

SUMMARY
Aspect-oriented programming is a programming technique for modularizing concerns that crosscut the basic

functionality of programs. In aspect-oriented programming, aspect languages are used to describe properties which crosscut
basic functionality in a clean and a modular way. In the paper aspect languages are discussed and compared with domain-
specific languages, mainly from the implementation point of view. The difference between aspect languages and aspect-
oriented languages is also pointed out. To show that existing domain-specific language implementation approaches can be
used also for aspect(-oriented) language implementation the aspect-oriented language AspectCOOL has been designed and
implemented with the compiler/interpreter generator tool LISA.

Keywords: aspect language, domain-specific aspect language, general-purpose aspect language, aspect-oriented language,
domain-specific language, general-purpose programming language

1. INTRODUCTION

A programming language is the basic software
engineering tool used to build a software system. It
can greatly increase the programmer's productivity
by allowing him to write a high-scalable, generic,
readable and maintainable code. In this regard, a
domain-specific language (DSL), which is a
programming language for solving problems in a
particular domain and provides built-in abstractions
and notations for that domain, is by no means an
exception. Domain-specific languages [13, 40, 45]
are usually small, more declarative than imperative,
and more attractive than general-purpose languages
for a variety of applications because of easier
programming, systematic reuse, easier verification.
Domain-specific languages have been used in
various domains such as graphics, financial
products, and 3D animation. These applications have
clearly illustrated the advantages of domain-specific
languages over general-purpose languages in areas
such as productivity, reliability, maintainability and
flexibility.

Recently, aspect-oriented programming (AOP)
[23] aiming to support a separation of concerns
attracts many researchers [17, 18, 21, 29, 31, 33,
37]. In AOP, aspect languages are used to describe
properties that crosscut basic functionality in a clean
and a modular way. So far, many aspect languages
have been proposed, designed and implemented.
Here, many interesting questions arise:

Is an aspect language a general-purpose or a
domain-specific language?
Can aspect language implementation benefit
from implementation approaches known for
domain-specific languages?
Where is the difference between aspect
languages and other domain-specific languages?
Are compiler-generator tools dedicated to the
development of domain-specific languages

suitable also for development of aspect
languages?

In this paper our point of view and answers to

these questions are given. The organization of the
paper is as follows. In section 2, aspect-oriented
programming is briefly described. The comparison
of the implementation of domain-specific and aspect
languages is given in section 3, followed by design
and implementation of our aspect-oriented language
AspectCOOL in section 4. Related work is described
in section 5. Finally, the conclusion is given in
section 6.

2. ASPECT-ORIENTED PROGRAMMING

The major abstraction technique in software
engineering is to divide the system into functional
components in a such manner that changes to a
particular component do not propagate through the
entire system. However some issues, called aspects,
are system wide and cannot be put into a single
functional component. Failure handling, persistence,
communication, coordination, memory management,
and many others, are aspects of a system behavior
that tend to cut-across groups of functional
components. As a consequence, a code of functional
components is tangled with aspect code. This
tangling problem makes functional components less
reusable, difficult to develop, understand and evolve.
The problem could be avoided if we could code
these aspects in separate modules and afterwards
weave them into functional components by an aspect
weaver. One of the first questions to which AOP had
to answer was: �Are current generalized procedure
languages1 [23] suitable for the description of
aspects?� It was argued [37] that generalized

1 Abstraction mechanisms in generalized procedure
languages are subroutines, procedures, functions, objects,
classes, and modules.

6 A Note on Aspect, Aspect-Oriented and Domain-Specific Languages

procedure languages do not provide the right
abstraction for the description of aspects and that
aspect languages are needed for the expression of
aspects. An aspect language is a language whose
abstractions can directly represent one or more
aspects. Due to the well known classification of
programming languages to general-purpose and
domain-specific languages, the next question is one
of the first which appear in our minds: �Are aspect
languages general-purpose or domain-specific
programming languages?�. With general-purpose
programming languages we can solve problems in
many application domains such as: numeric
computations, business processing, simbolic
processing, while a domain-specific language is a
programming language for solving problems in a
particular domain and provides built-in abstractions
and notations for that domain. Aspect languages
provide language mechanisms that explicitly capture
the crosscutting structure. With aspect languages
only aspects can be expressed, and for this reason
aspect languages are surely domain-specific
languages. This is in line with the clear separation of
component (base) languages and aspect languages in
AOP [23]. Component languages are used to capture
the basic functionality of the system, which is a
result of the system's functional decomposition.
These components have clearly defined the structure
and responsibilities. Since AOP extends the already
existing paradigms, component language can be any
of the general-purpose programming languages
belonging to different programming paradigms [47],
such as procedural, functional, object-oriented,
logic, process functional [25, 26]. Indeed, currently
in AOP, component languages are procedural [21],
functional [12, 30], process functional [28], logic
[14], and object-oriented languages [5, 8, 6, 16, 44].
Moreover, there is no reason for a component
language not to be also a domain-specific language
(e.g., spreadsheet language). However, the clear
separation of component languages and aspect
languages has shortcomings. A desire is to integrate
an aspect language into a component language in
a seamless way using new constructs and new
semantics. An aspect-oriented language is
a programming language where component language
is extended with an aspect parts in a seamless way.
In such language, aspect constructs are nicely
integrated into component language and these aspect
parts are not declared as a separate aspect language
with special name (e.g., AspectJ is an aspect-
oriented language where object-oriented language
Java has been extended with aspect constructs;
AspectJ is a proper extension of Java, any valid Java
program is also valid AspectJ program). Therefore,
it is important to distinguish between aspect-oriented
languages and aspect languages.

Aspects implement additional properties of the
system which crosscut the basic functionality of the
system. In order to achieve the desired properties of
the system, we need an aspect weaver that combines
the component and the aspect language by weaving

advices at appropriate join points and may involve
merging components, modifying them, optimizing,
and so on. In [32] three ways of combining aspects
and components were distinguished: juxtapose,
merge, and fuse. There are several possible
approaches to weaving which can be done by a pre-
processor, during compilation, by a post-compile
processor, at load or run-time, or using some
combination of these approaches. Since there are
many types of aspects, such as synchronization,
distribution, persistence, debugging, another
question is interesting: �Do we need an aspect
language for every type of aspect?�. Both answers
are possible. Therefore, aspect languages are further
divided into general-purpose aspect languages where
different aspects are described in the same language,
and domain-specific aspect languages where we
need an aspect language for every type of aspect.
With a domain-specific aspect language we can not
support aspects other than they were designed for.
The COOL and RIDL languages [33] are one of the
first domain-specific aspect languages. General-
purpose aspect languages are usually integrated in
a seamless way into general-purpose programming
languages forming aspect-oriented languages (e.g.,
AspectJ [24]). Note that we classified all aspect
languages (but not aspect-oriented languages) as
domain-specific languages! Here, the terminology is
misguiding. When we talk about aspect languages
terms "general-purpose" and "domain-specific" refer
to the ability of a language to express certain kinds
of aspects (general aspects vs. specific aspects),
while these terms in a broader sense of
programming languages refer to the ability of a
language to express different kinds of problems
(general problem vs. specific problem). General-
purpose and domain-specific aspect languages have
their own advantages and disadvantages (Table 1).
An advantage of a general-purpose aspect language
is at the same time a disadvantage of a domain-
specific aspect language and vice versa.

An important feature of an aspect language is
that it has to work together with the component
language. When an aspect language is developed a
component language is usually already known,
designed and implemented. In that case the benefits
are:

we do not have to implement a component
language,
the component language is already known to
programmers, and
programmers just learn a new aspect language.

On the other hand, there are also some

disadvantages:

extensions and restrictions of the component
language are difficult,
there is no access to the component compiler,
and
design of join points is not completely free.

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 7

One of the main disadvantages of domain-
specific aspect languages is that we need a new
aspect language for each new aspect.

general-purpose
aspect languages

domain-specific
aspect languages

advantages it is easier to
learn one
general-purpose
aspect language
than many
domain-specific
aspect
languages;

it is more
likely to be
accepted by
programmers.

the aspect
code can be
more concise
and easier to
understand;

its syntax
can be tailored
to the specific
aspect.

dis-
advanatges

low level of
abstraction for
aspect
description;

can not
guarantee
separation of
concerns [36].

the
introduction of
new aspects
increase the
number of
aspect
languages;

hard to
interact with
other tools
(debugger,
editor, ...).

Table 1 Advantages and disadvantages of aspect

languages

3. IMPLEMENTATION OF DSLS AND

ASPECT LANGUAGES

Design and implementation of domain-specific
languages, which aspect languages are, is itself a
significant software engineering task, requiring a
considerable investment of time and resources.
Therefore, it is an obvious question if current
implementation approaches of domain-specific
languages are also suitable for aspect languages and
where is the main difference between them.

Domain-specific languages are programming

languages for solving problems in a particular
domain and provide built-in abstractions and
notations for that domain. Despite that conventional
libraries of procedures/classes can introduce new
abstractions for describing specific problems,
although they are not suitable when the domain
requires:

syntax or/and semantic modifications,
domain-specific optimizations, and
domain-specific error checking and reporting.

Domain-specific languages are for many

applications more attractive than general-purpose
languages because of easier programming,
systematic reuse, better productivity, reliability,

maintainability, and flexibility. However, the
benefits of domain-specific languages are not for
free. Since the cost of domain-specific language
design, development and maintenance has to be
taken into account, one of the main questions is
�When and how to develop a domain-specific
language?� [40]. If we want to improve the
productivity, reliability, reusability or enable end
user programming in some narrow, but well defined
domain, then the domain-specific language might be
a solution and an answer to the first part of this
question. The development of a domain-specific
language usually includes the following phases:
analysis, design, implementation and finally their
use. In the analysis phase, the problem domain is
identified and the domain knowledge has to be
gathered; the domain-specific language is designed
so as to concisely describe applications in the
domain. The implementation phase can be mainly
done using one of the following approaches [40]:

Compiler/interpreter: Developing a compiler or
an interpeter for a whole language from scratch
and maintaining it is a difficult task. Standard
compiler tools (e.g., lex, yacc [1]), or tools
dedicated to the implementation of domain-
specific languages (e.g., ASF+SDF [9], LISA
[39], SmartTools [2]) can be of great help. The
weakness of this approach is non-
interoperability with other language processing
tools (editors, debuggers, etc);
Embedded language: An existing language is
extended by user-defined operators which build
a library of domain-specific operations. The
advantages of this approach are easy
implementation and programming features are
inherited from the host language, while the
weaknesses are the inability to express domain-
specific optimizations, domain-specific error
reporting, and domain-specific syntax.
Preprocessor: With this approach new
constructs are translated to statements in the
base language by a preprocessor. The advantage
of preprocessors is that the development cost of
new constructs is much smaller than the cost of
developing a whole compiler for the base
language. Unfortunately, this advantage is also a
disadvantage, since domain-specific error
reporting and domain-specific optimizations
cannot be performed.
Extensible compiler/interpreter: A compiler or
an interpreter is extended with new constructs;
this is usually done by a reflection mechanism.
Reflective languages have built-in language
extension capabilities which allow us to modify
the default semantics of the language [22].
However, extensibility of syntax is slightly
restricted in these systems.

These general approaches for implementation of
domain-specific languages are also appropriate for
the implementation of aspect languages. It is
interesting to see which approaches were used for

8 A Note on Aspect, Aspect-Oriented and Domain-Specific Languages

the implementation of some aspect(-oriented)
languages (Table 2). We can notice that many
aspect(-oriented) languages have been implemented
by preprocessors. The reason is that static weaving is
easily performed by preprocessors. On the other
hand, aspect(-oriented) languages with dynamic
weaving are usually implemented by a reflection
mechanism.

compiler/interpreter AspectJ ver 0.8 [24]

AspectCOOL [3]
embedded language TyRuBa [14]
preprocessor D [33]

AspectJ ver 0.6 [34]
D2AL [5]
C++ Framework [15]
TEA [6]
Malaj [11]
TinyC2 [49]

extensible
compiler/interpreter
(reflection)

AOP/ST [8]
Luthier MOP [42]
JST [44]

Table 2 Implementation aproaches for

aspect(-oriented) languages

We should also point to an important difference
between aspect languages and DSLs. Namely,
aspect languages influence the semantics of
component languages, and their implementation has
to interact with the implementation of component
languages. This feature makes aspect language
implementation harder. Every aspect language
defines certain places, called joint points, where it is
possible to associate aspect behavior. An important
design decision for aspect languages is how to
quantify places, pointcut designators, that need
modifications. Pointcut sublanguage should be
expressive enough to able to identify such points
easily on type and instance level [43]. Even more
important is how to define generic, reusable and
comprehensible pointcuts that are not tightly
coupled to an application�s structure [27, 46]. In [46]
a notation of inductively generated pointcuts was
proposed as a solution to this problem.

4. AspectCOOL

To answer the last question stated in the
introduction, namely �Are compiler-generator tools
dedicated to the development of domain-specific
languages suitable also for development of aspect
languages?� an aspect-oriented language
AspectCOOL has been implemented [3] with the
compiler/interpreter tool LISA [39].

We have a lot of experience with the
compiler/interpreter approach of domain-specific
language implementation. In our opinion, the
advantages of the formal definitions of general-
purpose languages should be exploited, taking into
consideration the special nature of domain-specific
languages. An appropriate methodology that

considers frequent changes of domain-specific
languages is needed since the language development
process should be supported by modularity and
abstraction in a manner that allows incremental
changes as easily as possible [41]. If incremental
language development is not supported, then the
language designer has to design languages from
scratch or by scavenging old specifications. To be
productive, the development of these languages has
to be based on high-level automated tools [20]. Our
tool LISA supports this methodology. It is a
compiler/interpreter generator based on a special
kind of attribute grammars [38] that supports
incremental development with multiple attribute
grammar inheritance and templates. Multiple
attribute grammar inheritance is a structural
organization of attribute grammars where the
attribute grammar inherits the specifications from
ancestor attribute grammars, may add new
specifications, and may override some specifications
from ancestor specifications. With inheritance the
lexical, syntax and semantic parts of programming
language specification can be extended. These
features make the tool LISA very appropriate for the
development of domain-specific languages. In this
section the design of aspect-oriented language
AspectCOOL is breifly described. More details on
implementation can be found in [3]. AspectCOOL is
an extension of the class-based object-oriented
language COOL (Classroom Object-Oriented
Language)2, which have been designed and
implemented simultaneously with AspectCOOL.
Both languages were formally specified with
multiple attribute grammar inheritance, which
enables us to gradually extend the languages with
new features and to reuse the previously defined
specifications.

The COOL language is an object-oriented
language used for studying object-oriented language
design and implementation. In addition to features
usually found in class based object-oriented
languages it has the following features:

Dynamic loading: Modules must be compiled
separately. Each component is compiled in a
separate object file. Loading of modules is done
on demand.
Method call interception: To support AOP we
must be able to intercept method calls with all
parameters from the caller and the callee.
Easy environment transportation: Local
environments inside methods should be easily
transported to the aspects and accessible outside
the local method environment.
Reflection: Using the class Class we can gather
information about join points. They contain
information about classes, instance variables,
methods and slots. Using reflection at method
call interception we can also gather information
about the caller and the callee.

2 Do not confuse this general-purpose programming
language with the specific aspect language COOL
developed by C. Lopes as a part of her Ph.D. thesis [33].

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 9

Dynamic referencing of the super class: Almost
all object-oriented languages compile super as a
static reference, which is calculated at
compilation. The static approach can be
problematic when implementing the calls to
super classes inside the aspect.
Slots: Methods may have explicit join points
also called slots. Slots must also be accessible
through reflection.

In the design of aspect-oriented language
AspectCOOL we want to explore different AOP
concepts and ideas such as:

separation of advices and join points,
explicit join points named slots,
caller to callee method call transitions as join
points,
separate compilation of aspect and component
code, and
applying aspects to components where the
source code is not available.

To achieve reusability of aspects [7] the aspect
program is divided into two parts: aspect classes and
the aspect application part. Each aspect class may
consist of advices and slot advices. The former are
applied as actions on join points, while the latter are
applied on slots in the component. Considering the
time of application, we have four types of advices
similar to [31]: before, enter, exit and after. Before
and enter advices are actions executed before the
execution of the actual method. Exit and after
advices are executed after the execution of the
method. On the other hand, before and after advices
are executed in the callers' environment while enter
and exit advices are executed in the environment of
the executed method.

When an advice is declared, the class on which
the advice can be applied has to be provided. This is
very important in the context of separate compilation
because we have to perform a static analysis of the
code in order to compile an advice. Each advice has
a list of formal arguments, which are used for
communication between an advice and the join
points on which it is applied. In the context of
separate compilation, method calls in components
are already compiled in such way that the caller
expects the return value of some type. In case that
the type of return value is modified by an advice, it
can only be modified to one of the subclasses of the
original return type. Without this limitation we
might come to the situation where the method on
which an advice is applied, returns a value
incompatible with the type expected by the method
caller, resulting in runtime error.

The aspect application part of the program in
AspectCOOL is the part where advices and slot
advices are connected to concrete join points. In
AspectCOOL we decided to describe the join point
as a method call from one method to another. This
method call with corresponding methods is also
called transition [31] and it supports the jumping

aspect code [10]. It is obvious that in this case the
join point is specified with a pair of caller and callee
methods. Since advices are usually applied on a set
of join points, a mechanism for the description of
such a transition set is also needed. Wildcards can
also be used for the description of a transition set.
Besides the transition set, the aspect, which is
applied, and its application time must be specified.

The basic approach used for aspect weaving in
the AspectCOOL language is a method call
interception. At the moment when the method call is
intercepted we have the possibility to perform
additional operations before and after the call of the
original method. In the process of aspect weaving
the main role is played by the Aspect Manager. The
Aspect Manager is a component responsible for the
registration of advices on join points. When the
method call takes place it is intercepted. The control
flow is transferred from the caller to the method call
interception. First, "before" advices are executed.
The control flow is passed to the Aspect Manager,
which then executes advices registered for that join
point. After that, the control is passed back to the
method call interception and the process is repeated
for "enter" advices. Next, the method is executed
followed by "exit" and "after" advices. After the
execution of each type of advice, the control flow is
transferred from the aspect manager back to the
method call interception because the appropriate
environment for each type of advice has to be
assembled. For "enter" and "exit" advices the
environment is bound to the callee object and for
"before" and "after" advices to the caller object. For
"exit" and "after" advices the return value also has to
be added to the environment. The important issue
here is also the optimization of the method call
interception and advice execution. Since this
approach of method interception for each method
call introduces additional operations, this overhead
has to be minimized as much as possible [4].

5. RELATED WORK

We strongly believe that the development of
domain-specific languages should not differ much
from the design and implementation of general-
purpose languages, as suggested in [45]. Therefore,
any tool that generates a compiler or an interpreter
from formal language specifications can be used for
efficient and rapid development of domain-specific
languages. Until now, various tools based on
different formal methods have been used for
domain-specific language development.

To explore different aspect-oriented
programming concepts and ideas, AspectCOOL has
been designed and implemented. Some of these
ideas have already been proposed in the literature. In
[7] the author suggests that aspect description
(aspect class) should be divided into two parts,
where advices and join points are separately defined.
Advice is a method-like construct where the
semantics of the aspect is described. Join points are

10 A Note on Aspect, Aspect-Oriented and Domain-Specific Languages

well-defined points in the execution of the program
where advices are executed. With this approach the
advice part is potentially much more reusable.
Unfortunatelly, this was just a proposition and the
implementation has not yet begun.

The benefits of applying aspects to Java
Commercial Off-the-Shelf (COTS) software is
described in [48]. Since the source code of COTS
software is not available or compiled classes may
not be available before they are loaded into the Java
Virtual Machine, the aspects have to be applied to
already compiled classes. In [48] class loading is
intercepted and the class bytecode is rewritten before
the class is instantiated by the Java Virtual Machine.
In our approach bytecode rewriting is not used since
we have full access to the component compiler and
instead of class loading interception the method calls
are intercepted.

In the paper [19] the distinction of aspect-
oriented languages and other programming
languages is discussed through the studying of
interpreters. Key elements to achieve aspect
behaviors are redefinition of the set and lookup
operators of the conventional interpreters.

 Implementation of aspect languages through
code instrumentation techniques [49] and partial
evaluation as weaving [35] can be also seen as
particular pre-processing approaches.

6. CONCLUSION

In the paper aspect languages are considered as
domain-specific languages. The main feature of
aspect languages, which differentiates them from
other domain-specific languages, is their influence
on the semantics of the component language. They
have to work together with a component language
using join points and weaving. We have also shown
that compiler-generator tools dedicated to the
development of domain-specific languages are
suitable for development of aspect(-oriented)
languages.

REFERENCES

[1] A.V. Aho, R. Sethi, J. Ullman. Compilers,

Principles, Techniques, and Tools. Reading,
MA, Addison-Wesley, 1986.

[2] I. Attalli, C. Courbis, P. Degenne, A. Fau, D.
Parigot, C. Pasquier. SmartTools: A Generator
of Interactive Environment Tools. 10th
International Conference on Compiler
Construction, CC'2001, LNCS, vol. 2027, pp.
355 - 360, 2001.

[3] E. Avdi au�evi , M. Leni , M. Mernik, V.
�umer. An experiment in design and
implementation of aspect-oriented language.
ACM Sigplan Notices, Vol. 36, No. 12, pp. 84 -
94, 2001.

[4] E. Avdi au�evi , M. Leni , M. Mernik, V.
�umer. Experimental aspect-oriented language

AspectCOOL. Proceedings of 17th ACM
symposium on applied computing, SAC 2002,
pp. 943-947, 2002.

[5] U. Becker. D2AL: A design-based aspect
language for distribution control. Position
paper. Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP�98, 1998.

[6] F. Bergenti, A. Poggi. Aspect Views as a
Means to Promote Reuse in Aspect-Oriented
Languages. Position paper. Proceedings of the
ECOOP'2000 Workshop on Aspects and
Dimensions of Concerns, 2000.

[7] A. Beugnard. How to make aspects re-usable, a
proposition. Position paper. Proceedings of the
Aspect-Oriented Programming Workshop at
ECOOP'99, 1999.

[8] K. Bollert. On Weaving Aspects. Position
paper. Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP'99, 1999.

[9] M. van den Brand, A. Van Deursen, J. Heering,
H. A. De Jong, M. de Jong, T. Kuipers, P.
Klint, L. Moonen, P.A. Olivier, J. Scheerder,
J.J. Vinju, E. Visser, J. Visser. The ASF+SDF
Meta-environment: A Component-Based
Language Development Environment. 10th
International Conference on Compiler
Construction, CC'01, LNCS, vol. 2027, pp. 365
- 370, 2001.

[10] J. Brichau, W. de Meuter, K. de Volder.
Jumping Aspects. Position paper. Proceedings
of the ECOOP'2000 Workshop on Aspects and
Dimensions of Concerns, 2000.

[11] G. Cugola, C. Ghezzi, and M. Monga. Malaj: A
Proposal to Eliminate Clashes Between Aspect-
Oriented and Object-Oriented Programming. In
Proceeding of 16th IFIP World Computer
Congress, International Conference on
Software: Theory and Practice, WCC2000,
2000.

[12] W. De Meuter. Monads as a theoretical
foundation for AOP. Position paper.
Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP'97, 1997.

[13] A. van Deursen, P. Klint, J. Visser. Domain-
Specific Languages: An Annotated
Bibliography. ACM Sigplan Notices, Vol. 35,
No. 6, pp. 26 - 36, 2000.

[14] K. De Volder. Aspect-Oriented Logic Meta
Programming. Position paper. Proceedings of
the Aspect-Oriented Programming Workshop at
ECOOP�98, 1998.

[15] L. Dominick. Aspect of Life-Cycle Control in a
C++ Framework. Position paper. Proceedings
of the Aspect-Oriented Programming
Workshop at ECOOP'99, 1999.

[16] E. Ernst. Separation of Concerns and Then
What?. Position paper. Proceedings of the
ECOOP'2000 Workshop on Aspects and
Dimensions of Concerns, 2000.

[17] R. E. Filman, D. P. Friedman. Aspect-oriented
programming is quantification and

Acta Electrotechnica et Informatica No. 1, Vol. 5, 2005 11

obliviousness. In workshop on Advanced
Separation of Concerns, OOPSLA, 2000.

[18] R. E. Filman. What is aspect-oriented
programming, revisited. In Workshop on
Advanced Separation of Concerns, ECOOP,
2001.

[19] R. E. Filman. Understanding AOP through the
Study of Interpreters. In AOSD Workshop on
Foundations of Aspect-Oriented Languages,
FOAL�03, 2003.

[20] J. Heering, P. Klint. Semantics of Programming
Languages: A Tool-Oriented Approach. ACM
Sigplan Notices, Vol. 35, No. 3, pp. 39 - 48,
2000.

[21] J. Irwin, J. Loingtier, J. Gilbert, G. Kiczales, J.
Lamping, A. Mendhekar, T. Shpeisman.
Aspect-Oriented Programming of Sparse
Matrix Code. Proceedings of International
Scientific Computing in Object-Oriented
Parallel Environments, ISCOPE'97, LNCS, vol.
1343, 1997.

[22] G. Kiczales, J. Des Riveres, D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
1991.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J. Loingtier, J. Irwin. Aspect-
Oriented Programming. 11th European
Conference on Object-Oriented Programming,
ECOOP'97, LNCS, vol. 1241, pp. 220-242,
1997.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, W. Griswold. An Overview of
AspectJ. ECOOP'01, LNCS, vol. 2072, pp.
327-355, 2001.

[25] J. Kollar. Process Functional Programming.
Proc. ISM�99, Ro�nov pod Radho�tem, Czech
Republic, April 27-29, pp. 41 - 48, 1999.

[26] J. Kollar. PFL expressions for Imperative
Control Structures. Proc. Scient. Conf. CEI�99,
Herl�any, Slovakia, October 14-15, pp. 23 - 28,
1999.

[27] J. Kollar, V. Novitzka. Static Weaving at
Dynamic Joint Points. Acta Electrotechnica et
Informatica, No. 1, Vol. 4, pp. 16 - 23, 2004.

[28] J. Kollar. Process Functional Properties and
Aspect Language. Acta Electrotechnica et
Informatica, No. 2, Vol. 4, pp. 25 - 32, 2004.

[29] J. Kollar. Poincut designators in an aspect
oriented language. Acta Electrotechnica et
Informatica, No. 3, Vol. 4, pp. 13 - 20, 2004.

[30] R. Laemmel, G. Riedewald, W. Lohmann.
Adaptation of functional object programs.
Position paper. Proceedings of the Aspect-
Oriented Programming Workshop at
ECOOP�99, 1999.

[31] R. Laemmel. A Semantical Approach to
Method-Call Interception. Proceedings of the
1st International Conference on Aspect-
Oriented Software Development, AOSD 2002,
pp. 41 � 55, 2002.

[32] J. Lamping. The interaction of components and
aspects. Position paper. Proceedings of the
Aspect-Oriented Programming Workshop at
ECOOP'97, 1997.

[33] C. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis,
Northeastern University, 1997.

[34] C. Lopes, G. Kiczales. Recent Developments in
AspectJ. Position paper. Proceedings of the
Aspect-Oriented Programming Workshop at
ECOOP'98, 1998.

[35] H. Masuhara, G. Kiczales, C. Dutchyn.
Compilation semantics of aspect-oriented
programs. In AOSD Workshop on Foundations
of Aspect-Oriented Languages, FOAL�02, pp.
17 � 26, 2002.

[36] K. Mehner, A. Wegner. Assessment of Aspect
Language Design. Position paper at Young
Researchers Workshop, GCSE�99, 1999.

[37] K. Mens, C. Lopes, B. Tekinerdogan, G.
Kiczales. Aspect-oriented Programming
Workshop Report. Proceedings of the Aspect-
Oriented Programming Workshop at
ECOOP'97, 1997.

[38] M. Mernik, V. �umer, M. Leni , E.
Avdi au�evi . Implementation of multiple
attribute grammar inheritance in the tool LISA.
ACM Sigplan Notices, vol. 34, no. 6, pp. 68-75,
1999.

[39] M. Mernik, M. Leni , E. Avdi au�evi , V.
�umer. LISA: An Interactive Environment for
Programming Language Development. 11th
International Conference on Compiler
Construction, CC�02, LNCS, vol. 2304, pp. 1-4,
2002.

[40] M. Mernik, J. Heering, T. Sloane. When and
How to Develop Domain-Specific Languages.
CWI Technical Report SEN-E0309, 2003.

[41] M. Mernik, V. �umer. Incremental
Programming Language Development.
Computer Languages, Systems and Structures,
No. 31, pp. 1-16, 2005.

[42] J. Pryor, N. Bastan. A Reflective Architecture
for the Support of Aspect Oriented
Programming in Smalltalk. Position paper.
Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP'99, 1999.

[43] H. Rajan, K. Sullivan. Need for Instance Level
Aspect Language with Rich Pointcut Language.
In AOSD Workshop on Software Engineering
Properties of Languages for Aspect
Technologies, SPLAT�03, 2003.

[44] L. Seinturier. JST: An Object Synchronization
Aspect for Java. Position paper. Proceedings of
the Aspect-Oriented Programming Workshop at
ECOOP'99, 1999.

[45] D. Spinellis. Notable design patterns for
domain-specific languages. The Journal of
Systems and Software, No. 56, pp. 91 - 99,
2001.

12 A Note on Aspect, Aspect-Oriented and Domain-Specific Languages

[46] T. Tourwe, A. Kellens, W. Vanderperren, F.
Vannieuwenhuyse. Inductively Generated
Pointcuts to Suppport Refactoring to Aspects.
In AOSD Workshop on Software Engineering
Properties of Languages for Aspect
Technologies, SPLAT�04, 2004.

[47] D. A. Watt. Programming Language Concepts
and Paradigms. Prentice-Hall, 1991.

[48] I. Welch, R. Stroud. Load-time Application of
Aspects to Java COTS Software. Position
paper. Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP'99, 1999.

[49] C. Zhang, H.-A. Jacobsen. TinyC2: Towards
building a dynamic weaving aspect language
for C. In AOSD Workshop on Foundations of
Aspect-Oriented Languages, FOAL�03, 2003.

BIOGRAPHY

Marjan Mernik received his M.Sc. and Ph.D.
degrees in computer science from the University of
Maribor in 1994 and 1998 respectively. He is
currently an associate professor at the University of
Maribor, Faculty of Electrical Engineering and
Computer Science. He was a visiting professor in the
Department of Computer and Information Sciences
at the University of Alabama at Birmingham in
2004. His research interests include principles,

paradigms, design and implementation of
programming languages, compilers, formal methods
for programming language description and
evolutionary computations. He is a member of the
IEEE, ACM and EAPLS.

Toma� Kosar received the BSc degree in computer
science at the University of Maribor, Slovenia in
2002. He is currently a young researcher at the
University of Maribor, Faculty of Electrical
Engineering and Computer Science. His research for
PhD degree is concerned with design and
implementation of domain-specific languages. His
research interest in computer science include also
domain-specific visual languages, compilers,
refactoring, and unit testing. He is a student member
of the IEEE.

Viljem �umer received his M.Sc. degree in
computer science from the University of Ljubljana
in 1977 and his Ph.D. degree in computer science
from the University of Maribor in 1983. He is
currently a professor at the University of Maribor,
Faculty of Electrical Engineering and Computer
Science. He is the founder of the Computer Science
Department at the University of Maribor and in
charge of many projects. His research interests
include computer architecture and programming
languages. He is a member of the IEEE.

