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SUMMARY 
Even when most of eddy current problems can succesfully be solved by differential techniques (particularly by the finite 

element methods), there exists a group of tasks where their application may cause various complications. Mentioned can be 
presence of geometrically incommensurable subdomains in the investigated area, ignorance of the boundary conditions, 
movement of some parts in the system etc. In such cases integral models may sometimes prove to be more advantageous. The 
paper presents the basic integral model of eddy current given by a system of the second-kind Fredholm integral equation and 
possibilities of using integral schemes of higher order of accuracy. The theoretical considerations are supplemented by two 
illustrative examples in 2D whose results are discussed and compared with values obtained by other ways.  
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1. INTRODUCTION 

Investigation of eddy currents in nonmagnetic 
structures represents a problem that is nowadays 
mostly solved by various differential techniques 
(mostly FEM). Despite this fact, however, there 
exists a group of tasks whose processing by these 
techniques is rather complicated and from time to 
time can fail. Mentioned can be arrangements with 
elements that are geometrically incommensurable 
(thin conductors versus air) or that move with 
respect to one another, which requires remeshing of 
the whole domain at each time step. Difficulties may 
also be caused by ignorance of boundary conditions 
(which is quite typical for these tasks), but they can 
often be overcome by using artificial boundary (with 
a physically real boundary condition) that is 
sufficiently distant from the area of our interest. 

An alternative for solution of such problems (as 
far as they are linear) is integral approach. Its 
principal ideas are not new, they were dealt with by 
a number of authors (see, for example [1], [2] and 
[3]), but up to now it was only rarely used for 
tackling eddy current problems because of several 
drawbacks. The principal disadvantage consists in 
the fact that the corresponding numerical schemes 
lead to systems with fully or strongly populated 
matrices and further difficulties may appear in 
association with numerical evaluation of various 
proper and improper integrals (whose values have to 
be determined with a sufficiently high accuracy). 

The basic mathematical model of the integral 
approach is given by a system of the second-kind 
Fredholm integral equations. And this system can be 
processed in several ways. The classic way consists 
in its discretization and transformation on a system 
of linear equations whose coefficients are given by 
the mentioned proper and (in the main diagonal) 
improper integrals. Even when the improper 
integrals over particular elements (triangles or 

rectangles in 2D, tetrahedra or hexahedra in 3D) are 
believed to be calculable analytically (so that their 
values would be exact), the resultant formulae are 
extremely complicated and long. A better way is 
perhaps to carry out analytically only the first or (at 
most) the second integration while the last one can 
be performed by higher-order Gaussian quadrature 
with practically negligible error. 

More sophisticated technique applicable for 
solution of the above system is the variational 
(Galerkin) approach with the possibility of using 
higher-order methods. This technique seems to be 
highly promising because it eliminates some of the 
above drawbacks. Necessary is much smaller 
number of elements in which the real distribution of 
the field quantity is approximated by higher-order 
polynomials. The total number of the degrees of 
freedom is substantially reduced and accuracy of 
results exponentially increases with the order of the 
considered polynomials. Careful selection of their 
coefficients also secures continuity of the 
approximated field quantity along the boundaries 
between particular elements in common with (when 
necessary) its derivatives. In association with 
suitable adaptivity techniques this methodology is 
supposed to become an extremely powerful tool for 
solution of specific eddy current problems. On the 
other hand, much more time and effort have to be 
exerted for preliminary computations of complicated 
doubled integrals representing elements of 
consequent numerical schemes. That is why no 
professional codes based on this technique are 
available so far and only few workshops deal with 
this topic.   

The paper describes the integral approach and 
briefly discusses its individual steps. Two 2D 
examples calculated by own codes written by the 
authors illustrate its possible applications. The 
results are compared with values obtained 
analytically or from professional FEM-based codes.  
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2. FORMULATION OF THE PROBLEM  
 

Consider a linear system consisting of free 
electrically conductive bodies  and 

inductors 

, 1, ,i i k

,, 1,i i k n  (see Fig. 1). The 

inductors are supposed to be supplied from sources 
of harmonic currents ext , 1,i ,I i k n  (with 

corresponding current densities ) 

of pulsation 
ext , 1,i i k nJ ,

. The system is supposed to operate 
in steady state and all elements can move at 
sufficiently low velocities (so that the component of 
eddy currents due to velocity may be neglected). 

 

 
 

Fig. 1  Basic arrangement of the system 
 

The task is to determine 
distribution of current densities within particular 
bodies of the system (in case that an inductor is 
wound by thin conductor, the skin effect in it 
can be neglected), 
distribution of the corresponding specific and 
total Joule losses, 
the Lorentz forces acting on individual 
elements.  

 
Knowledge of these quantities is a must for 

eventual subsequent thermal (induction heating), 
mechanical and other computations. 
 
3. MATHEMATICAL MODEL AND ITS 

SOLUTION 
 
As all electromagnetic quantities are harmonic, 

we will express them in terms of their phasors. 
Phasor A of the vector potential at any point 

 is then given as a superposition 

of components produced by eddy current densities in 
free elements  and components produced 

by total current densities in field coils 

, 1, ,j jQ j k

1, , k

1, ,k n . 

Now 
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Here eddy 1ii P i k, , ,J  denotes the phasor of 

eddy current density at point , i iP tot ii P ,J

1, ,i k n  the total external current density at 

point iP i  and  is the distance between the 

reference point 
i jPQr

jQ  and general point of integration 

 (for an illustration, Fig. 1 depicts such a distance 

between points  and ). 
iP

1Q kP

The total current density tot ii PJ  in an 

inductor consists of the uniform current density 

ext ii PJ  delivered from the external current source 

and current density due to skin effect eddy ii PJ

that is not known in advance. That is why equations 
analogous to (1) must generally be written even for 
the field coils. An exception holds for ideal thin 
conductors for which  

tot 
ext 

d d
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i j i j

i ii
i

PQ PQ

P V P
I

r r

J l
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and we can work directly with the field currents.  
The Maxwell equation [4] 

 curl curl
t t

B
E A                (3) 

generally yields solution 

grad t
t

A
E g                (4) 

where  is any scalar function of the coordinates 
(that is usually interpreted as the electrical potential) 
and  any vector function of time. As no free body g

, 1, ,i i k  is supposed to be connected to the 

external voltage source and contains no other 
supplementary source of the electric field strength 
(for example, of the thermoelectric or photovoltaic 
origin), the second and third terms on the right-hand 
side of (4) vanish. The electric field strength in 
structures 1, , k  is, therefore, given only by the 

time variation of vector potential A  and the phasor 
of eddy current density eddy 1i i, , ,J k  can be 

obtained as 

eddy ji ii iJ E A                  (5) 

where i  denotes the electrical conductivity of 

element i . After substituting (4) and (5) into (1) 

we get a system of integral equations for distribution 
of eddy current densities in structures  in 

the form 
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Analogous equations may be derived even for field 
coils made from massive conductors. System (6) 
must be supplemented by boundary conditions that 
are mostly indirect and that evaluate the total current 
in the body. These conditions will be explained and 
discussed in more details in the next paragraphs. 

The specific Joule losses  (whose distribution 

is necessary, for example, for consequent thermal 
calculations) at point  (in free 

bodies) are given by formula 

Jw

, 1, ,j jQ j k

2

eddy 
J

ji
j

j

Q
w Q

J
                (7) 

while in field coils  (some of 

them may be massive) 

, 1,j j k n,

2

tot 
J

jj
j

j

Q
w Q

J
.                 (8) 

The specific Lorentz forces L jf  acting at point  

 may be calculated as , 1, ,j jQ j k

L eddy j j j jQ Qf J B Q .           (9) 

It can be shown that this quantity can be transformed 
in terms of the corresponding phasors as 

*
L eddy 

*
eddy curl .

j jj

j jj

Q Q Q

Q Q

f J B

J A

j
        (10) 

The total Joule losses  in the th element or 

Lorentz force 
JW j

LF  acting on it can be determined by 

integration of (8) or (10) over its volume jV . 

 

 
 
 

Fig. 2  General 2D arrangement 
 
 
Solution to continuous model (6) can relatively 

easily be proved unambiguous [5]. But two serious 
problems have to be overcome to obtain particular 

results. The first of them is discretization of general 
3D bodies and the second solution of the obtained 
large linear system characterized by a dense matrix. 
We were not able to develop and write a sufficiently 
general program so far. That is why we illustrate the 
methodology on simpler 2D arrangements. 

Let us investigate a system of parallel massive 
conductors of any cross-section (see Fig. 2).  

The conductors are nonmagnetic, their cross-
sections do not change with length and they have the 
direction of axis . They are supposed to carry 
harmonic currents of frequency  and amplitudes 

z
f

ext 1 ext, , nI I . Current densities in them have only 

one nonzero component in direction  as well as the 
vector potential in the system. 

z

The cross-sections of the conductors are denoted 
by symbols  and corresponding electrical 

conductivities 
1, , nS S

1, , n . 

The system (6) can now be transformed (details 
see [6], [7]). The phasor of total current density 

tot jJ  at a reference point  of the ', 'jQ x y j th 

conductor is given as 

tot 0

2 2
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1
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, ln ' ' d
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j j

n

i iS
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J x y J

k J x y x x y y S

j n

 

(11) 

where 

0j , 2i
ik f                (12) 

and 0 jJ  is an unknown constant that has to be 

determined from indirect supplementary condition 

tot d , 1, ,
j

jjS
J S I j n .             (13) 

System (11) with conditions (13) may be solved 
numerically by the classical way or variational 
approach, as mentioned before. We briefly describe 
the principal steps of both algorithms. 
 
Standard way of processing 

The standard way of processing consists in 
discretization of the system and approximation of 
distribution of tot ,jJ x y  in each element of each 

conductor by selected functions (that are mostly 
constant, linear or quadratic). We illustrate the 
method in more details using the approximation by 
constants. 

Let the cross-section of the th conductor be 

discretized into 

j

jm  elements , 1, ,jk jS k m  

and in each element the physical distribution of the 
current density be approximated by constant 

, 1, , jjkC k m . Now we can rewrite (11) and 

(13) in the following way: 
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where point ,jl jl jlx y P  represent centre of gravity 

of element jlS  that is mostly of triangular or 

rectangular shape. Now it is necessary to determine 
integral 

2 2
ln d

ik
ik jl jlS

I x x y y S     (15) 

that may be either proper (when jl iP S k ) or 

improper ( jl iP S k ), , ikx y S .  

 
In case of rectangular element (Fig. 3) we have 
 

 
 

Fig. 3  To the calculation of ikI   

over a rectangular element 
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where 

   
3 ,

, , 1,2.

ikpq pik qik ikp jl pik

ikq jl qik

A a b B x a

C y b p q
          (17) 

 
Computation of ikI  over a general triangle (see 

Fig. 4) is much more complicated. As the final 
formula takes a lot of place, we only indicate the 
way how to determine it. First we introduce 
transform 

 

1 2 3

1 2 3

1 ,

1 ,

d d 2 d d , 0,1 , 0,1

ik ik ik

ik ik ik

ik

x x u x v x u v

y y u y v y u v

x y S u v v u u

 (18) 

 

 
 

Fig. 4  To the calculation of ikI  

over a triangular element 
 
 

where ikS  is the area of the triangle. Integral (15) 

may then be reformulated correspondingly and its 
evaluation can be realized, for example, by SW 
Mathematica. The more effective way is, however, 
to perform the first integral analytically and the 
second one by means of the Gauss quadrature 
formulas with practically negligible error. 

More sophisticated could appear approximation 
of current density in the element by higher-order 
polynomial. In such a case, however, we have to
select a reference point jlP S jl  for integral (15). 

But all points within the element can be declared 
equivalent, so that none of them should be preferred. 
This dilemma is, unfortunately, unsolvable in the 
indicated way, but by the following variational 
approach. 

 
Variational approach 
 

Variational approach allows using of higher-
order approximation. Its first step consists in 
selection of suitable trial functions (usually 
polynomials) and approximation of the searched 
quantity in particular element by their combination. 
The next step is application of the Galerkin method
in order to find the best coefficients of the 
combination representing the degrees of freedom.  

Putting 

,q r
ik pik

p

J x y q r N              (19) 
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where  is the degree of the polynomials and N pik  

are its coefficients. Substituting (19) into (11) and 
(13) we obtain 

0
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2 22
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(21) 

Application of the Galerkin technique now 
requires successive multiplication of (20) by 
particular terms of the polynomial in form 

' 'x y                               (22) 

and integration over element jlS . In this way we 

obtain a system of linear equations for coefficients 
. Analytical computation of particular integrals 

representing the matrix coefficients is again possible 
for both rectangular and triangular elements; on the 
other hand, the resultant formulas are extremely 
complicated. A better way is perhaps to use Gauss� 
quadrature formulas, at least for the final integration. 
  
4. ILLUSTRATIVE EXAMPLES 

The first example is evaluation of movement (at 
velocity ) of a massive copper conductor of 
rectangular shape carrying current 

v
I  of frequency 

and phase shift f  over an electrically conductive 

thin copper plate (see Fig. 5). The solution is carried 
out by the classical method using constant 
approximation of current densities in particular 
elements. 

v copper plate ( )

copper conductor ( I,  f, )

wp

h p

wc

h c

d

x

y

z

 
 

Fig. 5  Moving conductor over copper plate 

Parameters:  
Plate - mm, mm, p 50w p 3h 57 MS/m. 

Conductors - c 5w mm, mm, c 3h 57  

MS/m, mm/s, A, 2.7v 150I 500f Hz, 

0 . 

Distance between the conductor and plate 
mm. 2d

The system was supposed to be in harmonic 
steady state.  At the starting time 0t  the left 
side of the conductor was over the left side of 
the plate (see Fig. 5). Investigated were 10 
positions of the conductor shifted successively 
by 5 mm, the last one being indicated by the 
dotted line in Fig. 5.  

 
The example was calculated by own code (the 

discretization mesh had about 3600 elements) and 
the results were validated by FEM-based codes 
FEMM 4.0 (about 100000 elements) and QuickField 
5.0 (130000 elements). The times of computation 
were quite comparable (each example took on a PC 
2.6 GHz, 1GB RAM approximately 150 s). Such 
densities of meshes were proved sufficient to secure 
satisfactory geometrical convergence of the results. 
Some of these results are summarized and discussed 
in Table 1 and several following figures.   

Tab. 1 contains important data concerning the 
position of the conductor and instantaneous values 
of the real and imaginary parts of the total current 
passing through it.  

 
Tab. 1  Characteristic parameters of the 

conductor in particular positions 
 

position 
of the left
corner of 

the  
conductor

(mm) 

time 
(s) 

phase 
shift 
(°) 

Re(I) 
(A) 

Im(I) 
(A) 

0 0.00 0.00 150 0
5 1.85 57.76 -43.78 143.47

10 3.70 115.53 56.48 138.96
15 5.56 173.29 -68.71 -133.34
20 7.41 231.06 4.01 -149.95
25 9.26 288.82 -135.12 65.13
30 11.11 346.59 -48.97 -141.78
35 12.96 44.35 -123.03 -85.82
40 14.81 102.11 44.38 143.28
45 16.67 159.88 -122.31 86.84

 
 

Figs. 6 and 7 show the values of the 
corresponding Lorentz  forces xF  and yF  acting on 

the conductor at its particular positions 
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Fig. 6  Total horizontal force xF  acting on the 

conductor 
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Fig. 7  Total vertical force yF  acting on the 

conductor 
 

As can be seen from both figures, the maximum 
differences (especially in yF ) are about 10%. It is, 

unfortunately, not easy to decide what results are the 
best. Therefore, we prepared Fig. 8 that provides the 
total horizontal and vertical forces acting on the 
system (conductor and plate) that must identically be 
equal to zero. 
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Fig. 8  Total forces acting on the system 
 

While the integral method provides values of the 

order of  N, both FEM-based codes give 
values higher by about twelve orders. That is why 
the integral method is supposed to be more accurate
in this case. 

1510

Figs. 9 and 10 show the values of the total 
average Joule losses in the conductor and in the plate 
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Fig. 9  Total average Joule losses in the conductor 
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Fig. 10  Total average Joule losses in the plate 
 
 

It can be seen (the results from QuickField are 
omitted) that even when the differences between 
both distributions are small, the more accurate 
values are provided again by the integral model (see 
Fig. 9). 

Finally Fig. 12 shows distribution of the module 
of current density along vertical line going through 
the centre of the conductor and the plate for position 
25 mm. Even here the results practically coincide. 
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Fig. 11  Distribution of J  along the vertical axis 

through the centre of conductor for position 25 mm  
 

 
The second problem presents an application of 

the Galerkin method for computation of the skin-
effect in a massive conductor of circular cross-
section of radius  and electrical conductivity R . 

The results are compared with values obtained 
analytically (well-known formulas containing the 
Bessel functions). 

In [8] equation (11) was for a long cylindrical 
conductor transformed into  

0 0
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J r r r r J
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     (23) 

where  is the reference radius . This 
equation has naturally to be supplemented with 
condition (13). 

a 0 a R
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Let us now suppose that 

1
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.
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i
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J r r                       (24) 

After substituting (24) into (23) and consequent 
integration we get 
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This equation has to be successively multiplied by 

, and integrated from  to . In 

this way we obtain a system of equation in the form 
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where 0j µk . Condition (13) may be 

modified as 
1

1 1 2

in

i
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i

I
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The matrix of system consisting of (26) and (27) 

is, unfortunately, ill-conditioned, so that its inverse 
has to be performed extremely carefully. 
 
 

Table 1  Real parts of the total current density 
 

radius 
r (mm) 

Re[J] 
(A/mm2) 

 
exact 

analytical 
solution 

Re[J] 
(A/mm2) 

 
numerical 
integral 
solution 
(order 0) 

 
10 rings 

Re[J] 
(A/mm2) 

 
numerical 
integral 
solution 
Galerkin 
(order 5) 

1 ring 

Re[J] 
(A/mm2) 

 
numerical 
integral 
solution 
Galerkin 

(order 10) 
1 ring 

0.5 -0.096157 -0.096473 -0.095760 -0.096157 
1.5 -0.082941 -0.082955 -0.079111 -0.082941 
2.5 -0.054649 -0.054602 -0.055180 -0.054649 
3.5 -0.008025 -0.006610 -0.011517 -0.008025 
4.5 0.060590 0.062921 0.058405 0.060590 
5.5 0.153608 0.156704 0.155191 0.153608 
6.5 0.269773 0.273107 0.273523 0.269773 
7.5 0.400899 0.403433 0.402164 0.400899 
8.5 0.527887 0.527976 0.523950 0.527887 
9.5 0.616437 0.611863 0.615800 0.616437 

 
 

An example has been calculated with parameters 
mm, A, Hz and electrical 

conductivity of used material 

10R 100I 500f

59 MS/m. The 

results calculated by a procedure written in the 
environment of SW Mathematica are summarized in 
Tabs. 1 and 2. The second column contains 

analytically obtained value, the third column results 
calculated numerically by standard zero-order 
numerical solution of, the fourth column by the 
Galerkin approach for ), and the last column 
by the same method for . The last results are 
in accordance with the analytically obtained values 
practically in six valid digits. 

5n
10n

 
 

Table 2  Imaginary parts of the total current density 
 

radius 
r (mm) 

Im[J] 
(A/mm2) 

 
exact 

analytical 
solution 

Im[J] 
(A/mm2) 

 
numerical 
integral 
solution 
(order 0) 

 
10 rings 

Im[J] 
(A/mm2) 

 
numerical 
integral 
solution 
Galerkin 
(order 5) 

1 ring 

Im[J] 
(A/mm2) 

 
numerical 
integral 
solution 
Galerkin 

(order 10) 
1 ring 

0.5 0.111400 0.113688 0.112112 0.111400 
1.5 0.122314 0.124578 0.121335 0.122314 
2.5 0.141794 0.143922 0.141234 0.141794 
3.5 0.164794 0.166556 0.165281 0.164794 
4.5 0.182963 0.183965 0.183835 0.182963 
5.5 0.183981 0.183678 0.184135 0.183981 
6.5 0.151197 0.148956 0.150309 0.151197 
7.5 0.064038 0.059324 0.063366 0.064038 
8.5 -0.100109 -0.107436 -0.098799 -0.100109 
9.5 -0.361779 -0.370997 -0.361406 -0.361779 

 
 
5. CONCLUSION 
 

Integral analysis of eddy currents and other 
associated electromagnetic quantities in linear 
systems represents a reliable and powerful tool 
providing direct distribution of current density 
without necessity of evaluating the field quantities. 
The only serious problem is solution of large fully 
populated matrices that follow from discretization of 
the continuous mathematical model. This problem 
can be, however, avoided (at least to some extent) by 
using higher-order Galerkin approach that seems to 
provide extremely accurate approximations. 

Of course, higher accuracy of results is paid for 
by much more complicated computation of 
coefficients of the system matrix. These are given by 
doubled integrals over various geometrical elements, 
whose determination is extremely laborious. 
Nowadays, we are enumerating these integrals over 
rectangular or hexahedral elements, which is 
possible (even when with considerable 
complications) in the analytical way. Much more 
complicated is their computation over general 
triangles (2D) or tertahedra (3D). Even when some 
of them (but perhaps only for low degrees of 
approximation polynomials) may also be evaluated 
analytically, the more promising way seems to be 
using the Gauss quadrature in 2D or 3D. 

Planned is further extensive investigation in the 
field aimed at mathematical aspects (velocity, 
accuracy) of the method and possibilities of its 
practical application. The results will be validated by 
comparison with other reliable methods and with 
experiments.  
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The methodology is planned to be used for 
solution of a lot of problems concerning eddy 
currents, for example induction heating, processing 
of nonferromagnetic molten metals, electrodynamic 
levitation and many others. 
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