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SUMMARY 
The proposed paper gives the results of the development work related to design pattern recognition system based on 

Application of fast translation invariant Rapid Transform (RT) and GMDH. The system was implemented as a software 
package on PC and tested with identification of classes of real objects. Experimental results are given for applying the 
proposed invariant pattern recognition system to recognition of Nativity Symbols, Informative Symbols and Cuneiform
Writings corrupted by noise. 

Keywords: GMDH, Rapid Transform (RT), Modified Rapid Transform (MRT), pattern recognition, invariant feature
extraction, information symbol classification

1. INDRODUCTION 
 

Transformation methods can be used to obtain 
alternative descriptions of signals. These alternative 
descriptions have many uses such as classification, 
redundancy reduction, coding, etc., because some of 
these tasks can be better performed in the transform 
domain [1,2]. 

Various transformations have been suggested as 
a solution of the problem of high dimensionality of 
the feature vector and long computation time. Such 
transforms are RT and modified RT (MRT), which 
are fast translation invariant transforms from the 
class CT [1-4]. We apply the RT in feature 
extraction stage of the recognition process. 

Whereas conventional empirical modelling 
techniques require an assumed model structure, new 
procedures have been developed which generate the 
model structure as well as the model coefficients 
from a database [1,5-7]. One of these procedures 
is  he  GMDH  (Group  Method  of  Data  Handling)  

 

algorithm usually used for creating polynomial 
networks with active units. GMDH is a useful data 
analysis technique for the modelling of non-linear 
complex systems [5,6,7]. We apply the GMDH 
algorithm as intelligent network classifier in the 
proposed new Invariant Pattern Recognition System. 
 
2. RAPID TRANSFORM 
 

In the field of pattern recognition and also scene 
analysis is well known the class of fast translation 
invariant transforms - Certain Transforms (CT) 
[1,3,4] based on the original rapid transform (RT) 
[3] but with choosing of other pairs of simple 
commutative operators. The RT results from a minor 
modification of the Walsh-Hadamard transform 
(WHT). The signal flow graph for the RT is 
identical to that of the WHT, except that the absolute 
value of the output of each stage of the iteration is 
taken before feeding it to the next stage. The signal 
flow graph for one-dimensional RT is showed on the 
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Fig. 1. RT is not an orthogonal transform, as no 
direct inverse exists. With the help of additional 
data, however, the signal can be recovered from the 
transform sequence, i.e. invertible rapid transform 
(IRT) can be defined [1,8]. RT has some interesting 
properties such as invariance to cyclic shift, 
reflection of the data sequence, and the slight 
rotation of a two-dimensional pattern. It is 
applicable to both binary and analogue inputs and it 
can be extended to multiple dimensions [1]. 
 
 
3. GMDH ALGORITHM DESCRIPTION 

 
The idea of GMDH (Group Method of Data 

Handling) is the following: we are trying to build an 
analytical function (called "model") which would 
behave itself in such a way that the estimated value 
of the output would be as close as possible to its 
actual value [5]. For many applications such an 
analytical model is much more convenient than the 
"distributed knowledge" representation that is 
typical for neural network approach [6,7,11]. 

The most common way to deal with such a 
problem is to use linear regression approach. In this 
approach, first of all we must introduce a set of basis 
functions. The answer will then be sought as a linear 
combination of the basis functions [5]. For example, 
powers of input variables along with their double 
and triple cross products may be chosen as basis 
functions. To obtain the best solution, we should try 
all possible combinations of terms, and choose those 
that give best prediction. The decision about quality 
of each model must be made using some numeric 
criterion. To reduce computational expenses, one 
should reduce the number of basis functions (and the 
number of input variables), which are used to build 
the tested models. To do that, one must change from 
a one-stage procedure of model selection to a 
multistage procedure. 

GMDH is based on sorting out procedure, that is 
successive testing of models selected out of a set of 
candidate models according to a specified criterion 
[6]. Most of GMDH algorithms use polynomial 
support functions. General connection between input 
and output variables can be found in form of a 

functional Volterra series, whose discrete analogue 
is known as the Kolmogorov-Gabor polynomial 
[5,7]: 

 

n

i

n

j

n

k
k

x
j

x
i

x
ijk

a

n

i

n

j
j

x
i

x
ij

a
n

i
i

x
i

aay

1 1 1

1 11
0

          (1) 

 
where X=(x1, x2, ... , xn) is the vector of input 
variables and A=(ai, ... ,aij, ... , aijk, ... ) is the vector of 
the summand coefficients. Components of the input 
vector X can be independent variables, functional 
forms or finite difference terms [5]. The method 
allows finding simultaneously the structure of the 
model and the dependence of modelled system 
output on the values of most significant inputs of the 
system.  

The multilayer GMDH algorithm enables to 
construct Kolmogorov-Gabor polynomial by a 
composition of lower-order polynomials (partial 
function) of the form [5,11]: 

 xa  xa xxa  xa  xa  a y 2
j5

2
i4ji3j2i10 (2) 

where i,j = 1, 2, ... , m; i j. 
 
To find these polynomials (the coefficients) it is 

sufficient to have only six data points at our 
disposal. Repeated solution of this quadratic 
polynomial (2) enables to construct the complete 
polynomial (1) of any complexity. 

The input data of m input variables x are fed 
randomly; for example, if they are fed in pairs at 
each unit (node or processing element PE), then a 

total of
2

)1(2 mm
Cm  partial functions (PEs) of the 

form below are generated at the first layer (Fig. 2): 
 

f(x) y              (3) 

 
where f(x) is partial function as in (2) and y is its 
estimated output. 
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Fig. 3  Data splitting 
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Then outputs of F1  functions (PEs) are 

selected (freedom of choice) as per the threshold 
measure to pass on to the second layer as input in 
pairs (Fig. 2). To avoid over fitting, available input-
output data are divided into two sets: one set is used 
for training (training data set) and the other is the 
selection data set (Fig. 3). Parameters of the 
polynomial are calculated using only the training 
data set. In the next layer the partial functions of the 
same form (2) are generated. The number of such 

functions (nodes) is . The process continues 

until the stopping criterion is satisfied: typically, the 
mean squared error (MSE) of the best performing 
PE (node) of every layer will decrease until a 
minimum is reached at layer k; if further layers are 
added, the MSE will actually rise [5]. The best 
performing PE on layer k (or first p best PEs) is 
selected as the output node for entire network. 
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4. IMPLEMENTATION OF THE GMDH 

ALGORITHM 
 

Data can be previously normalized by: 
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Most of the selection criteria require the division 

of the data into two or more sets. Suppose we have a 
sample set of N data points (x1, y1), (x2, y2), ..., (xN, 
yN). First thing to do is splitting the data set into 
three sets: the training data set A, the selection data 
set  B  (W = A    B)  the  test  data  set  C  (Fig. 3).  

 

The first two sets are used to construct the network, 
and the test data set is used to obtain a measure of its 
performance (to find the optimal model or models). 

The data splitting can be performed in several 
ways, which is depending on the application. In 
general, the data can be ordered (according to their 
variance, time, etc.) or unordered and proportions of 
splitting can be 40%, 25% and 35%, or 50%, 25% 
and 25% or other for A, B and C set correspondingly 
(Fig. 3). In the case, when data are arranged 
according to their variance, data with higher 
variance belong to the training set. 

In our experiments each processing element 
receives three input variables xi, xj, xk i  j, i  k, j  
k and generates output using linear and polynomial 
activation function respectively: 
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The weights a = [a0, a1, ... a3] and a = [a0, a1, ... a6] 
are computed by least squares technique: 
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Fig. 4  Block scheme of pattern recognition system based on RT and MRT transforms and GMDH algorithm 
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All partial functions are evaluated by follow 
external criterion: 
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where W=A B and C is test data set. 
 
The algorithm will stop when: 

a maximum number of layers has been reached 
(k =kmax) 
the performance of the best-fitted node on each 
layer has reached a minimum. 

 
5. INVARIANT PATTERN RECOGNITION 

SYSTEM  
 
 Block scheme of the invariant pattern recognition 
system based on RT (or MRT) transform and 
GMDH algorithm is on Fig. 4. Digital pattern enter 
to "Image Transformation " module, where is 
transformed using RT or MRT. The amount of data 
is reduced in "Feature Reduction" module. Features 
that will be in feature vector are selected during the 
teaching process and stored in �Memory of 
Features� module. 

In GMDH classification system (Fig. 4) each 
independent category of patterns (images) has it�s 
own model computed in teaching process. These 
models are stored in "Memory of GMDH Models" 
module. Output of each model is value 1, if the input 
pattern corresponds with the class of that model and 
output value is 0 otherwise. 
 
6. EXPERIMENTAL RESULTS 
 

The proposed new invariant pattern (image) 
recognition system was tested in the recognition of 
a set of 120 independent classes of Nativity Symbols 
(Fig. 5), of Informative Symbols (Fig. 6) and of 
Cuneiform Writings (Fig. 7). We implemented 
feature extraction with RT. As teaching sets we use 
sets containing 60 to 252 symbols for each class of 
symbols. As a recognition sets we use eight sets of 
120 noised symbols with noise rate 1%, 2%, ..., 8%. 
The results of experiments with RT using simple 
Euclid classifier and polynomial (linear and non-
linear) GMDH classifier are on Tab. 1 for Nativity 
Symbols, on Tab. 2 for Informative Symbols and on 
Tab. 3 for Cuneiform Writings. As can be seen, the 
recognition system with GMDH classifier gives 
better performance. The recognition efficiency is 
increasing if we use teaching sets with noised 
patterns. The best performance is for the system 
based on combination of RT and GMDH algorithm. 

 
Tab. 1 The efficiency of the recognition process for nativity symbols 

Teaching set 

 Without noise 
and 1% of 

noise 

Without noise, 
1% and 2% of 

noise 

Without noise, 
1%, 2% and 
3% of noise 

Without noise, 
1%, 2%, 3% 
and 4% of 

noise 

Without noise, 
1%, 2%, 3%, 
4% and 5% of 

noise 
RT 80,274% 84,167% 88,333% 88,981% 90,833% 
RT + linear GMDH 77,592% 82,407% 87,315% 95,092% 96,111% 
RT + non-linear GMDH 69,722% 68,333% 84,537% 89,722% 94,074% 

Tab. 2 The efficiency of the recognition process for informative symbols 
Teaching set 

 Without noise 
and 1% of 

noise 

Without noise, 
1% and 2% of 

noise 

Without noise, 
1%, 2% and 
3% of noise 

Without noise, 
1%, 2%, 3% 
and 4% of 

noise 

Without noise, 
1%, 2%, 3%, 
4% and 5% of 

noise 
RT 89,091% 90,101% 91,111% 92,828% 94,545% 
RT + linear GMDH 85,859% 91,313% 94,646% 95,253% 95,960% 
RT + non-linear GMDH 93,131% 93,838% 94,141% 97,576% 97,576% 

Tab. 3 The efficiency of the recognition process for cuneiform writings 
Teaching set 

 Without noise 
and 1% of 

noise 

Without noise, 
1% and 2% of 

noise 

Without noise, 
1%, 2% and 
3% of noise 

Without noise, 
1%, 2%, 3% 
and 4% of 

noise 

Without noise, 
1%, 2%, 3%, 
4% and 5% of 

noise 
RT 78,549% 80,452% 82,778% 84,028% 86,354% 
RT + linear GMDH 86,736% 90,973% 94,271% 95,209% 96,320% 
RT + non-linear GMDH 77,222% 84,167% 87,361% 91,875% 95,174% 
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7. CONCLUSION 

The proposed paper gives the results of the 
development work related to design a new invariant 
pattern recognition system based on the combination 
of the RT and the GMDH algorithm. The proposed 
system was realised as a software tool on the PC and 
tested in experiments with recognition of noised 
Nativity Symbols, Informative Symbols and 
Cuneiform Writings. The obtained experimental 
results are satisfied and recognition efficiency, 
which was obtained, are up to 69% - 97% for 
Nativity Symbols, up to 85% - 98% for Informative 
Symbols and up to 77% - 97% for Cuneiform 
Writings. The obtained results are satisfied. 
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Fig. 5  Nativity Symbols used in experiments 
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Fig. 6  Informative Symbols used in experiments 
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 eny           en         em       ezs               ez          ev      ü,  
  
 
 
 
 
                u, ú             ety         et      esz  
 

Fig. 7  Cuneiform Writings used in experiments 


