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SUMMARY 
The motivation for this work is maintaining high accuracy of phase information that is required for some applications

such as interferometry and polarimetry, polar quantization techniques as well as their applications in areas such as 
computer holography, discrete Fourier transform encoding, and image processing.  In this paper the simple and complete
asymptotically analysis is given for a nonuniform polar quantizer with respect to the mean-square error (MSE) i.e. granular
distortion (Dg). Granular (support) region of a quantizer is considered as the interval where quantization errors are small, or
at least bounded; that’s why it is greater challenge to include the overload distortion in estimation procedure of a quantizer
([1]). The support region for scalar quantizers has been found in [1] by minimization of the total distortion D, which is a
combination of granular (Dg) and overload (Do) distortions, og DDD . Swaszek and Ku [2] didn’t consider the problem of

finding the optimal maximal amplitude, so-called, support region. The goal of this paper is solving the quantization problem
in case of nonuniform polar quantizer and finding the corresponding support region. We also gave the conditions for 

optimum of the polar quantizer and optimal compressor function. The equation for opt
gD  is given in a closed form. The

construction procedure is given for i.i.d Gaussian source. 

Keywords:  phase divisions, number of levels, optimal granular distortion, asymptotical analysis, Unrestricted Polar
Quantization

1. INTRODUCTION 
 
Polar quantization techniques as well as their 

applications in areas such as computer holography, 
discrete Furrier transform encoding, image 
processing and communications have been studied 
extensively in the literature. Synthetic Aperture 
Radars (SARs) images can be represented in the 
polar format (i.e., magnitude and phase components) 
[3]. In the case of MSE quantization of a symmetric 
two-dimensional source, polar quantization gives the 
best result in the field of the implementation [3]. The 
motivation behind this work is to maintain high 
accuracy of phase information that is required for 
some applications such as interferometry and 
polarimetry, without loosing massive amounts of 
magnitude information [3].  

One of the most important results in polar 
quantization are given by Swaszek and Ku who 
derived the asymptotically Unrestricted Polar 
Quantization (UPQ) [2]. Swaszek and Ku gave an 
asymptotic solution for this problem without a 
mathematical proof of the optimum and using, 
sometimes, quite hard approximations, which limit 
the application. Polar quantization consists of 
separate but uniform magnitude and phase 
quantization, on N  levels, so that rectangular 
coordinates of the source (x,y) are transformed into 
the polar coordinates in the following form: 
r=(x2+y2) 1/2, where r represents magnitude and  is 
phase: 
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for I, II, III and  IV quadrant.

 
The asymptotic optimal quantization problem, 

even for the simplest case - uniform scalar 
quantization, is actually nowadays [5]. In [1] the 
analysis of scalar quantization is done in order to 
determine the optimal maximal amplitude. 
Swaszek and Ku [2] didn�t consider the problem of 
finding the optimal maximal amplitude, so-called, 
support region.  

The support region for scalar quantizers has been 
found in [1] by minimization of the total distortion 
D, which is a combination of granular (Dg) and 
overload (Do) distortions, og DDD . The goal of 

this paper is solving the quantization problem in the 
case of nonuniform polar quantizer and finding the 
corresponding support region. It is done by 
analytical optimization of the granular distortion and 
numerical optimization of the total distortion.  
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In the paper Peric and Stefanovic [6] analyses are 
given for optimal asymptotic uniform polar 
quantization. Analysis of optimal polar quantization 
for moderate and smaller values of N is given in [7].
In this paper the simple and complete asymptotical 
analyses (for large values N) are given for a 
nonuniform polar quantizer with respect to the 
mean-square error (MSE) i.e. granular distortion 
(Dg). We consider D as a function of the vector 
P= whose elements are numbers of phase 

quantization levels at the each magnitude level. Said 
by different words, each concentric ring in 
quantization pattern is allowed to have a different 
number of partitions in the phase quantizer (P

1( )i i LP

i) 
when r is in the i-th magnitude ring. Optimal 
Unrestricted Polar Quantization (OUPQ) must 

satisfy the constraint  in order to use all of 

N regions for the quantization. We prove the 
existence of one minimum and derive the expression 
for evaluating P
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L

i
i

P N

opt(r,m) for fixed values of 
reconstruction levels (m= ), decision levels 

(r= ) and number of levels L. We also gave 

the conditions for optimum of the polar quantizer, 
optimal compressor function and optimal numbers 
of levels.  We derive 

1( )i i Lm

1( )i i Lr

opt
gD  in a closed form. 

We also gave the example of quantizer 
constructing for a Gaussian source. This case has 
the importance because of using Gaussian 
quantizer on an arbitrary source; we can take 
advantage of the central limit theorem and the 
known structure of an optimal scalar quantizer for 
a Gaussian random variable to encode a general 
process by first filtering it in order to produce an 
approximately Gaussian density, scalar-quantizing 
the result, and then inverse-filtering to recover the 
original [8]. 
 
 

2. CONDITIONS FOR OPTIMALITY AND 
DESIGN OF UNRESTRECTED POLAR 
QUANTIZER 

 
For these analysis we assume that the input is 

from a continuously valued circularly source with 
unit variance rectangular coordinate marginals and 

bivariate density function 2 2( , ) ( ).f x y p x y

Transforming to polar coordinates, the phase is 
uniformly distributed on a [0,2 ) and the 
magnitude is distributed on a [0, ) with density 
function ( ) 2 ( )f r rp r . Note that magnitude 

and phase are independent random variables. The 
transformed probability density function for the 

Gaussian source is 
2
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Without loosing generality we assume that 
variance is: 22 1 . 

We consider nonuniform polar quantizer with L 
magnitude levels and Pi phase reconstruction points 

at magnitude reconstruction level mi, 1  i  L. In 
order to minimize the distortion we proceed as 
follows.  

First we partition the magnitude range [0,rL+1 ] 
into magnitude rings by L+1 decision levels (see 
Fig. 1) r=(r1 ,…,rL+1 ) and (0 = r1 < r2 < ... <rL <rL+1

= ).  maxr
The magnitude reconstruction levels (see Fig. 1) 
m=(m1,…,mL) obviously satisfy (0 < m1 < m2 < ...
< mL). Next we partition each magnitude ring into 

Pi phase subdivisions. Let ij and i,j+1 be two 
phase decision levels, and let i,j  be j-th phase 

reconstruction level for the i-th magnitude ring, 1 j

Pi. Then , ( 1)2 / 1,2,..., 1i j i ij P j P

j P

,  and 

i, (2 1) /i j  (see Fig. 1). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  UPQ and j-th cell on i-th level preview 
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The  distortion D   for UPQ (rL+1= ) is [6]: 
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Total distortion D, for OUPQ (rL+1= ) is a 

combination of granulation and overload distortions 
D=D

maxr

g+Do: 
 

, 1 1

,

2 2
,

1 1

1
[ 2 cos( )]

2

i j ii

i j i

rPL

i i i j
i j r

f r

2
D r m rm drd

     

, 1

, 1

2 2
,

1

1
[ 2 cos( )]

2

L jL

L j L

P

L L L j
j r

f r
r m rm drd

2
  

 (2) 

We integrated (2) by , and get the equation for 

granular distortion: 
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(where in sinc(x)=sin(x)/x); (2) we use :  
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From: 0g
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As final result, we find approximation for as: im

2
1 ii

i

rr
m  (6) 

We can obtain from High Resolution Theory [1] that 
high values for R ( ) and critical values 

for P
2logR N

i satisfy given approximation. 
The equation for Dg is obtained by using High 
Resolution Theory [6]. 
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where is  . 1i ir r

 
We prove that the problem of minimizing the Dg(P) 
is a convex programming problem. Function Dg(P) 
is convex if its Hessian matrix is the positive 
semidefinite one [4]. 
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The minimization of  function D

it follows that Dg(P) is a convex function of P.  
 

g(P) for fixed 
number of magnitude levels L constrained by the 
total number of reconstruction points N  is 
formulated in this way: minimize Dg(P) under the 

constraints 
1

L

i
i

P N . We use the equation: 

J=Dg+ Pi, where  represents Lagrange 

multiplier. From 0
i

J

P
  we obtain : 
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and finally: 
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The formula (9) is like to formula in paper [7] (i.e. it 
should obtained utilizing approximation   
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i
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r
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r

rf r dr m f m i ).   

 

The approximation given by Swaszek and Ku for the 
asymptotically Unrestricted Polar Quantization 
(UPQ) [2]: 

1 ,

1

2L L L L
L

r m m r
Lg m

 (10) 

 

 is not correct for Unrestricted Polar Quantization 
because 1L Lr m . That is the elementary 

reason for introducing support region ( ), where 

 is restricted for the scalar quantization  analysis, 

which is based on using compressor function g. 

maxr

maxr

We replaced max
, ( )i

i

r

Lg m
, where g is compressor 

function, and approximate the sums by integrals 
( i dr ), and we get Pi   as: 
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2 ,3
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2 , 23

0
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L r f r g r dr
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As final result, we find the equation for granular 
distortion: 
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The function Dg(L) is convex of L, because  

2 2 2
3max

02 4 2 2
max4 3

gD r
I I

L L N r
. The optimal number 

of levels problem can be solved analytically only for 
the asymptotical analysis as it is suggested: from the 

condition 0gD

L
 we came to the optimal solution 

for Lopt : 
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The optimal granular distortion is: 

06
opt
gD I

N
I I  (14) 

We can obtain g(r) like in [2] by using Hölder�s 
inequality: 
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and    
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N
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Example:

We compared results for Gaussian source. Numbers 
of magnitude levels and reconstruction points,
reconstruction points and decision levels are 
calculated by using (for Gaussian source [2]): 
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g(r) is a compressor function given by : 
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s s
ds

 

Method presented in the paper [2] cann�t be applied 
for some values of N and numbers of level L. For 
number of level L, the total number of points is in 
the range, 

( 1 2N N N 1 2( ( ) 0.5)round L

2

), 2N , 2.  

This follows from the fact that r and m are equal for 
any N in the range(

2 2( ( ) 0.5)N round L

1N N N ), and since Popt 

is dependent of m, N and introduced approximations,

then  
1

L

i
i

P N  will not be satisfied. In addition, for 

some values of N from the former range, we cannot 

reach  
1

L

i
i

P N . 

With goal to calculate rough (approximately) the 
deviation of calculated number of points than 
proposed number of points  N by the method from 
paper [2], we will make next approximate analisys. 

For estimation of 
1

L

i
i

P  we gave following 

approximation: we found the total number of points
[2]  as:  
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We considered the most critical values for
N= 1M = 1N  and N= 2M =  where 2N

i iM M . (see Table 1.) 

L  1M  2M  MM11
 MM22

 

11 221 264 10.26 11.24 
50 4901 5100 44.25 50.25 

100 19801 20200 99.25 100.25 
150 44701 45300 149.25 150.25 
200 79601 80400 199.25 200.25 

 
Table 1. 

 
Correct analysis i.e the deviation of calculated 
number of points than proposed number of points we 
will give for L=11 i N=221. (see Table 2.) 
By Swaszek and Ku [2] for each L=const, m and r 
are equal. For N= =221  L=11 

, and 

1N

1

232,84
L

i
i

P 1 11,84  (approximately 

1 10,26  from Table 1). 

For Pi=round(Pi) we can�t satisfy constraint   

. We get 11 values for P
1

233 221
L

i
i

P N i by 

rounding, but 9 of them are different from values in 
[2]. 
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ri[2] mi[2] i[2] iopt Pi [2] Popt Preal

0 0.114 0.228 0.227 2.991 3 2.822 

0.228 0.343 0.231 0.230 8.901 8 8.392 

0.459 0.577 0.238 0.236 14.58 14 13.74 

0.697 0.819 0.248 0.247 19.85 19 18.70 

0.945 1.074 0.264 0.262 24.50 23 23.09 

1.209 1.348 0.286 0.284 28.31 27 26.68 

1.495 1.651 0.322 0.318 30.94 29 29.19 

1.817 1.996 0.377 0.371 31.96 30 30.21 

2.194 2.415 0.477 0.465 30.69 29 29.12 

2.671 2.980 0.711 0.673 25.88 25 24.77 

3.382 4.002  1.551 14.24 14 14.28 

 

Table 2. 
 

For a fixed  number N we determine ( , )  iP L
 
Step 1)  

2
04
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I
;          

g(r) is a compressor function given by : 

max

4 4
max

0 0

( ) ( )
( ) ( ) ( )

rr f r f r
g r r dr dr

r r
 

 

Step 2)  
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Step 3)  
The exact optimal value for  is obtained 

repeating our optimization method for different 

and choosing the values for which 

maxr

maxr

g oD D D  is 

minimal.  
 
3. CONCLUSION 
 

The solution given by Swaszek and Ku[2] is the 
best one found by now but for large N. Swaszek and 
Ku gave an asymptotic solution for unrestricted 
nonuniform polar quantization without a 
mathematical proof of the optimum and using, 
sometimes, quite hard approximations, which limit 
the application. We gave elementary reasons for 
consideration  support region  of polar quantization. 
In this paper the simple and complete asymptotical 
optimal analysis is given for constructing 
nonuniform unrestricted polar quantizer. We also 
gave the conditions for optimality of the nonuniform 
polar quantizer. We gave an equation for optimal 
number of points for different levels and also, 
optimal number of levels (these equations always 

satisfy the constraint: ). The equation for 
1

L

iopt
i

P N

opt
gD  is given in a closed form. Applying our 

algorithm, incompleteness from [2] is eliminated. 
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