
Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 25

PROCESS FUNCTIONAL PROPERTIES AND ASPECT LANGUAGE

Ján KOLLÁR
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Ko�ice, Letná 9, 042 00 Ko�ice, Slovak Republic,
tel. +421 55 602 2577, E-mail: Jan.Kollar@tuke.sk

SUMMARY
In this paper we present essential characteristics of aspect-oriented approach to programming as provided in aspect

programming languages. Then we de-modularize a programming structure of a process functional sample to a type definition
module and the own definition module, using purely functional case. Adding environment variables to the type definition
module we show that there are possible resources to the computational reflection using process functional paradigm in a
well-defined variable environment. We also identify the weaknesses and possible directions in further development of object-
oriented process functional language to extend it to an aspect oriented language.

Keywords: Programming paradigms, process functional programming, aspect oriented programming, computational
reflection, programming environments

1. INTRODUCTION

Aspect oriented programming evolves from the
fact that there exist some crosscutting concerns in
systems that cannot be well modularized using
traditional structured, object or component based
software development methodologies. There is no
formal proof but high deal of evidence that
combination of different concerns of computation in
complex software systems yields to scattered and
tangled code, which is inappropriate to maintenance
[2,3,4]. Sometimes, the appropriate modularization
still can be reached, but the prize is too high � the
run-time efficiency is decreased.

The other source for producing tangled code is
adding a new concern of computation after a system
has been developed. Then the situation, when
manifold source code modifications are needed for
the purpose of efficiency, is the nightmare of
programmers. Scattering code manually clearly
decreases the reliability of the system and its
capability for the maintenance.

AspectJ [7,8] is a programming language, which
provides the opportunity to a programmer for the
modular description of crosscutting concerns via
aspect declarations. The aspect declaration, similar
to class declaration is a modular unit, which in
addition to class declaration contains

pointcut � the definition of a collection of join
point � well defined points of computation in
which advice is applied, and
advice � a part of code, which is applied in join
points, defined by pointcut designator. 1

AspectJ approach has evolved from Java � which

is inherently object oriented imperative language.

This work was supported by VEGA Grant No.
1/1065/04: Specification and Implementation of
Aspects in Programming.

Therefore it seems that the subject of aspect
language is applicable just to an object-oriented
paradigm, but this is not true [1,16,35]. Crosscutting
concerns can be taken into account also at the
procedural level, excluding object paradigm, or at
functional level, excluding an imperative paradigm.
On the other hand, the crucial question is the
usefulness of separated programming paradigms, for
the development of large systems. Our mention is
that better direction is to integrate them.

For example, object paradigm is without doubt
the best-balanced basis for applying crosscutting
concerns across classes because of systems
complexity and their imperative nature.

However, the limits of AspectJ language are
currently known [9]. The substance of these limits is
as follows: Sometimes there is too strong
interference between the function of computation
and an aspect (specifically when parallel concerns
are considered) and then the benefits of an aspect
approach are not so high as expected. The reasons of
this fact may be perhaps in strong binding of
AspectJ to Java byte code. It may be noticed that
AspectJ pointcut designators have their origins in
Java language implementation, since AspectJ is an
extension to Java.

In this paper we present our approach to possible
incorporation of aspect programming paradigm into
PFL - a process functional programming language
that is based on application of processes, rather than
statement sequences [10,11,12,13,14]. Although at
the present time we have object PFL implemented
[15,29,30,31,32] with both Haskell [22] and Java
target code, it is not our aim to provide just a new
programming language. The aim is to exploit the
uniform and simple multi-paradigmatic structure of
PFL integrating the functional, imperative [5,34],
and object oriented paradigm [15] with the aspect
paradigm. We have found it useful during
experiments with profiling process functional
programs [23,24,25] and mobile agents

26 Process Functional Properties and Aspect Language

programming [20]. In the following sections we
present the essence of the aspect oriented conception
and then, using simple tracing example, we will
show the properties of process functional paradigm
with respect to requirements to aspect extensions.
Finally, we discuss the current state and possible
directions in further research.

2. ASPECT ORIENTED CONCEPTION

Let us introduce the essential conception of the

aspect approach to system development according to
Fig.1. For the purpose of simplicity, let us consider
incremental development of a system, considering
first a functional aspect of computation and after that
some tracing aspect. Let the functionality of a
system is defined by the structure of two modules as
illustrated by gray rectangles in the stage 1 of
Fig.2.1.

Figure 2.1 Aspect � oriented conception

Omitting the detailed function, the system of two

modules can be compiled and executed. Suppose we
need to include some tracing actions into modules.
Instead of doing it manually, in aspect approach we
write (in the stage 2) ASPECT module. This module
consists of the pointcut and the advice. Pointcut is a
collection of points in original modules that are the
subject of interest (the subject of tracing, in our
case). Such points are called join points. The
pointcut is defined by the pointcut designator, i.e. a
formula that identifies a collection of join points,
marked by small dots in modules in Fig.2.1. In this
manner join points are just identified, but the
original modules are not affected.

The second part of the aspect is the advice - a
part of code, which we want to place at join points.
The pointcut is used in the definition of advice. The
stage 2 is finished.

The stage 3 in Fig.2.1 illustrates weaving, which
is an automated process of transforming original
modules and defined aspect module, producing two
modules, in which tracing actions are woven.

The result is a new system of consisting of two
modules, in which the advice is applied, see stage 4
in Fig. 2.1. As can be seen, this new system has
tracing code scattered across the original modules.

There are two main benefits of this aspect
approach. First, a programmer need not scatter the
advised tracing code manually and second,
whenever needed, tracing aspect may be �removed�
by re-compilation of original system to obtain the
system with functionality as before its aspectizying.

Although tracing example yields scattered code,
it is high deal of evidence, that combining other
aspects can yield even tangled code, and it is not
dependent on whether the system is developed
incrementally or not.

Tracing above is based on pointcut, which
defines static joint points that are the subject of
compile time weaving. Opposite to static join points,
dynamic joint points are such that are defined in
dynamic context of program i.e. while execution. An
example is cflow pointcut designator in AspectJ,
which is used to define join points occurring in all
methods called from a given method of a class.

Then, instead static weaving, dynamic (i.e. run-
time) weaving must be used to perform crosscutting
in dynamic join points.

The complication coming out from dynamic
context of a program is as follows: The events
during execution belong to a different abstraction
levels, from such as input values of computation to
those as architecture resources. The commonly
accepted mechanism, which allows identify run-time
crosscutting is computational reflection [26].

Computational reflection is the capability of a
computational system to reason about itself and act
upon itself, and adjust to changing conditions. The
computational domain of a reflective system is the
structure and the computations of the system itself.
A reflective system incorporates data representing
static and dynamic aspects of it; this activity is
called reification. This self-representation makes it
possible for the system to answer questions about
and support actions on it.

Thus, the crucial task associated with dynamic
context reasoning is to incorporate reflection data
into a system, extracting them from original. In
particular, we will show in this paper, how it can be
solved using process functional program structure.

In the next section we will present the possible
modularization of a purely functional program,
starting with a simple purely functional case
obtaining separate function type definition module
and function definition module. In section 4 we will
use the type module, aspectized by variable
environment.

3. TYPE AND DEFINITION MODULE

Process functional paradigm is based on

evaluation of processes that affect the memory cells
by their applications. PFL - an experimental process
functional language comes out from pure functional
languages, including an imperative programming

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 27

environments [15]. PFL environments are
manipulated neither in monadic manner [34] nor in
an assignment-based manner. Instead of this, source
form of a process functional program has strongly
separated visible sets of environment variables (in
type definitions) and invisible side-effect operations
(in definitions). In this section we will consider just
(pure) functions f and g (not processes) and main
expression main, as introduced in Fig. 3.1

f :: Int -> Int
f x = 2*x

g :: Int -> Int -> Int
g x y = f x + f y

main :: Int
main = g 2 3

Figure 3.1 Purely functional program P

PFL form of purely functional program P is

identical to that in Haskell, using currying in
application of functions, for example (g 2 3),
instead of g(2,3) � the form usual in imperative
languages. The evaluation of program P proceeds by
the reduction as follows:

main = g 2 3

 f 2 + f 3
 2*2 + 2*3
 10 (3.1)

The evaluation is the same if the program is
written without function type definitions, see
Fig. 3.2, because the types are derivable from
definitions in Milner type system. Let us designate
this function module definition D. Then the
semantics of P and D is the same, i.e.

[P] = [D] (3.2)

f x = 2*x

g x y = f x + f y

main = g 2 3

Figure 3.2 Function definition module D

Since the mutual position of the type definition

and the definition of a function in a program is not
significant, we may write all type definitions in
separate type definition module TM, illustrated in
Fig. 3.3.

f :: Int -> Int

g :: Int -> Int -> Int

main :: Int

Figure 3.3 Function type definition module TM

If applying the composition W to module TM and

D the composed program W(TM,D) is the source
program in Fig. 3.4, then the semantics of P is the
same as W(TM,D):

[P] = [W(TM,D)] (3.3)

f :: Int -> Int

g :: Int -> Int -> Int

main :: Int

f x = 2*x

g x y = f x + f y

main = g 2 3

Figure 3.4 Composed program W(TM,D)

If D is an original module and TM is an advice,

which is added at join point before the first
definition in D by default, then, in terms of aspect
programming, W is a trivial weaver. This weaver is
an identity, since, as follows from (3,2) and (3,3), it
holds:

[W(TM,D)] = [D] (3.4)

Let us consider polymorphic function type

definitions in separated module in Fig. 3.5. Instead
of type constants Int type variables are used.

f :: a -> a

g :: a -> a -> a

main :: a

Figure 3.5 Polymorphic type module TP

The same weaver W is used to compose TP and D

obtaining woven program W(TM,D), according to
Fig. 3.6.

28 Process Functional Properties and Aspect Language

f :: a -> a

g :: a -> a -> a

main :: a

f x = 2*x

g x y = f x + f y

main = g 2 3

Figure 3.6 Composed program W(TP,D)

Since during type-checking phase the
monomorphic types for all function are derived, as
in P, we may conclude, as for monomorphic case,
that it holds

[W(TP,D)] = [D] (3.5)

Informally, including the `aspect� to a purely

functional definition module in the form of function
type definitions (both monomorphic and
polymorphic) does not affect evaluation at all, since
this is the same as introduced in (3.1).

It may be noticed that functional programming
style is out of our interest (clearly the form in
Fig. 3.1 is the most appropriate form from this
viewpoint). Here we are extremely interested in
separating concerns in PFL with respect to aspect
programming paradigm.

The importance of separating concerns into
different modules grows up when considering
additional aspects of computation. As shown in the
next section, we are able slightly modify the type
module without any change of the definition module,
and then weave them changing the semantics of
program P, i.e. the definition D. This fact is crucial
in aspect programming.

4. STATE ASPECT

Suppose now a �small� change of the type
definition module TP, according to Fig. 4.1, where u,
v, and w are the environment variables.

f :: u a -> a

g :: v a -> w a -> a

main :: a

Figure 4.1 State aspect TS

In this way we have defined the state aspect of
computation, since by TS we require two things:

1. For all applications of f in D: before f is applied

to an argument e, assign e to u and then use e as
an argument. This follows from (u a) in the
type definition for f.

2. For all applications of g in D: before g is applied
to the first argument e1, assign e1 to v and then
use e1 as the first argument of g., and before (g
e1) is applied to the argument e2, assign e2 to
w and then use e2 as the second argument of g.
This follows from the type definition for g.

For example, (f 2) will perform assignment

u:=2 (using Pascal notation), and then (f 2) will
be evaluated as in purely functional case.
Considering (g 2 3), it is guaranteed, that
assignments v:=2 and w:=3 are performed before
(g 2 3) is evaluated continuing by f 2 + f 3
evaluation.

It means that except a purely functional
evaluation according to the reduction (3.1),
additional side effect actions (assignments) are
performed. Or, from another viewpoint, argument
values of functions f and g are traced using three
environment variables: u, v, and w.

However, the selection of join points is weak.
Our pointcut designator can be expressed just
informally, as follows:

Join points are all arguments of functions defined

by a user, (i.e. except built-in operations).

Our joint points are identified with a very low
flexibility, since there are no designators able to use
quantifiers and/or logical operations in PFL.

In this paper we will concentrate on advices, as
�a parts of code� being used at join points. In this
matter it is substantial to understand the weaving

W(TS,D) (4.1)

which, using the same weaver W and the same
definitions D as above produces the program PS

which evaluates differently than program P. Hence,
new aspect TS affects the semantics. Hence it holds

[W(TS,D)] [D] (4.2)

The woven form of program PS is in Fig. 4.2.

According to Fig. 4.2 we have introduced three
environment variables in an (imperative)
environment, we have defined three functions in a
class Env, and we apply them to each argument of
user-defined functions. Let us consider first these
applications informally.

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 29

env
 uc:: a
 vc:: a
 wc:: a

class (Env b a) where
 u:: b -> a
 v:: b -> a
 w:: b -> a

instance (Env a a) where
 u x = let uc=x in uc

 v x = let vc=x in vc

 w x = let wc=x in wc

instance (Env () a) where
 u x =uc

 v x =vc

 w x =wc

f :: a -> a

g :: a -> a -> a

main :: a

f x = 2*x

g x y = f (u x) + f (u y)

main = g (v 2) (w 3)

Figure 4.2 Program PS = W(TS,D)

Corresponding to our requirements to all

applications of f and g, defined by our informal
pointcut above, we require the result of evaluation to
be the same as in (3.1). The function of computation
is preserved, if it holds

u e = e, v e = e, w e = e

for all expression e of a data type. It means that
environment variables in PFL are not just cells of
memories, but they are identities, if their arguments
are of a data type.

Next, before an environment variable is applied
to argument e, the argument e is stored to the
variable (since the environment variable is not just
an identity, but also a memory cell). This state
aspect corresponds to assignments

uc := e, vc := e, wc := e

for all expression e of a data type, where variables as
cells are marked by c to distinct them from
variables as functions. Hence, the application, such
as (v e) evaluates in two subsequent steps s and e,
which we express by a pair

(s; e)

where s may be an assignment or empty action, i.e.
state action and e is an expression, which defines the
(functional) value of application.

Then the complete definition of a variable v in

terms of two aspects is as follows:

v x = (vc:=x; x), if x ()
v x = (; vc), if x = ()

Semantically equivalent definition to that above is as
follows:

Definition 4.1. Informal definition of environment
variable

v x = (vc:=x; vc), if x ()
v x = (; vc), if x = ()

The latter better expresses the argument data

flow through the variable. The second equation is
not used in our examples, since here we work just
with data values. But notice, that if an argument of a
function would be control value, designated by (),
then state is not affected (since state action is
empty), and the application v () yields the data
value having been stored in cell vc.

The definition of v above is informal, since the
value of the application is not the pair on right hand
side, just the second item, we use imperative
sequencing (;) and imperative assignment in a pair
on right hand side of informal definition. But
looking at Fig.4.2 it is easy to see, that it holds

(vc:=x; vc)= let vc=x in vc
 (; vc)= vc

Using informal definition for environment

variable the program PS is evaluated as follows:

main = g (v:=2;2) (w:=3;3)
 f (u:=2;2) + f (u:=3;3)
 2*2 + 2*3
 10 (4.3)

To simplify notation, we designate cells by u, v,

and w, not using uc, vc, and wc anymore. Except the
function of computation is evaluated (the value of
(v:=2;2) is 2, the value of (w:=3;3) is 3, etc.),
program PS traces all argument values used in
applications of user-defined functions storing them
to variables � external memory cells that belong to
variable environment env of computation.

Since then functions affect the variable
environment, they are rather processes than
functions. That is why we call this paradigm process
functional. However, in framework of this paper is
more substantial, that weaving the module TS and D

30 Process Functional Properties and Aspect Language

the semantics of original module D will change,
according to (4.2).

Notice that our �weaver� W performs compile
time transformation, when producing W(TS,D). But
the same W acts as identity when producing W(D).
In each case, the type checking is performed after
weaving.

Further, as follows from evaluation of W(TS,D)
we can say, that arguments of user-defined functions
are reflected in variable environment performing the
next sequence of assignments.

v:=2; w:=3; u:=2; u:=3;

The sequence above is true if all arguments are

evaluated in the leftmost order and + is left
associative operation. Some comments on this, and
other problems associated with maintaining
reflective information are introduced in the
following section.

5. DISCUSSION

In this section we identify some problems
coming out from the current state of process
functional programming language, which is aimed to
be adapted to an aspect programming language.

Currently we have developed a compiler from
object-oriented PFL to both Haskell and Java
languages. The purpose of PFL project was to
provide a programming language, which would
make open view to variable environment to a user as
it is in imperative languages, and at the same time to
preserve the approach coming out from purely
functional languages, that the evaluation is defined
by application of processes and functions, excluding
the sequences of statements. As a result, PFL is a
simple and an expressive language, and still more
relaxed than Haskell, since function of computation
can be affected by evaluation order.

The weaknesses of PFL language and its

perspectives, from the viewpoint of aspect
programming paradigm are as follows:

The order of evaluation is fixed and it is
supposed to be known to a programmer. Then
aspect of evaluation order, which is associated
with parallelism, cannot be defined separately.
Since this aspect is highly dependent on target
architecture, sometimes even at the level of built-
in operations [6,33], it must be expressible
explicitly.
Nothing has been said about the use of reflected
values in this paper. But PFL is capable for the
definition of multi-threaded programs and the
mechanism for accessing the values in
environments is defined by application of an
environment variable to control value. The
updates can be performed in one thread and the
accesses in the second thread.

Using control values is possible but wrong
programming praxis. One possible solution is to
�tear� of purely functional programs is monadic
approach. This is well disciplined but still just
programming methodology, so including control
values as a new control aspect seem to be more
perspective.
In this paper the mechanism of application of
environment variables is used just to reflect the
values of arguments. But it may be noticed, that
the mechanism is very strong, because we may
reflect not just values coming from computation,
but also from an external environment, such as
architecture resources.
Or, it is possible to use the single variable for
many points of a program. Then, if we use v
instead of both u and w in Ts we would obtain
the following tracing

v:=2; v:=3; v:=2; v:=3;

Although PFL arrays are over the scope of this
paper, process functional paradigm can be
applied in backward direction. It means that it is
possible to generate an application of a new
generated variable to each expression instead of
this expression, and then compose the set of
variables into an array that �application� to a
type substitutes this type in a function type
definition. Then we would obtain something like
this

v:=2; w:=3; u{0}:=2; u{1}:=3;

Using PFL, the reflection interface is still not
flexible enough, since of using just environment
variables in type definitions. Extensions are the
subject of our current research.
At the time it is strong feeling that fixed number
of abstraction levels is not sufficient enough to
provide a general purpose aspect language, open
to new aspects that can arise in the future.
Currently no pointcuts can be defined in PFL.
It is however clear that pointcuts must be
defined rather over abstraction levels than
according user requirements. Providing the
appropriate syntax and semantics of pointcuts is
crucial task, since they affect compile-time pre-
weaving, and are related to reflection
information when performing run time weaving.

6. CONCLUSION

In this paper we use the principle of composing
multiple modules into target program by source-to-
source transformation. Using simple tracing example
we have shown the principle of the reflection of
values in purely functional evaluation, to an external
variable environment.

We also discuss briefly the use of values coming
from external environment variables. It may be
noticed that our type system unifies data and control
types just for arguments of environment variables

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 31

(the types are unified just in the type variable b in a
generated class Env b a, otherwise not). This
is the difference between PFL and Haskell.

Opposite to the specification approaches oriented
to the correctness of programs [17,18,19], or
specialized tools for time-critical systems [27,28],
our approach supports the computational
environments of the systems in a more open way.
We take into account different levels of abstraction,
working still at programming language level and, at
the same time, at the level of programming
paradigm.

Considering the aspects are crosscutting concerns
of computation, pointcut designators must specify
lexical, syntactic and semantic levels of an aspect
language, the environmental properties and run-time
events of computation. But this is still not sufficient,
since it is necessary to prevent the situation, when
adding a new aspect fails since of language
restrictions.

The openness to dynamic aspects is the crucial
property of an aspect language. In this paper we
have presented the systematic manipulation with
environments provided by process functional
paradigm as a proposition for the development of an
aspect process functional language considering
computational reflection.

REFERENCES

[1] Andrews, J.: Process-algebraic foundations of

aspect oriented programming.

http://citeseer.nj.nec.com/andrews01processalg
ebraic.html, 2001.

[2] Avdicausevic, E., Lenic, M., Mernik, M.,
Zumer, V.: AspectCOOL: An experiment in
design and implementation of aspect-oriented
language. ACM SIGPLAN not., December
2001, Vol. 36, No.12, pp. 84-94.

[3] Avdicausevic, E., Mernik, M., Lenic, M.,
Zumer, V.: Experimental aspect-oriented
language - AspectCOOL. Proceedings of 17th
ACM symposium on applied computing, SAC
2002, pp. 943-947.

[4] Filman, R. E., Friedman, D. P.: Aspect-oriented

programming is quantification and ob-
liviousness. In Workshop on Advanced Sepa-
ration of Concerns (OOPSLA 2000), Oct. 2000.

[5] Hudák, P.: Mutable abstract datatypes - or -
How to have your state and munge it too. Yale
University, Department of Computer Science,
Research Report YALEU/DCS/RR-914,
December 1992, revised May 1993.

[6] Jel�ina, M., Vokorokos L., Sobota, B.: Parallel
Computer Architecture of the MIMD
Paradigm, Proc. of the III. Internal Scientific
Conference of the Faculty of Electrical
Engineering and Informatics, May 2003,
Ko�ice, pp. 35-36, ISBN 80-89066-65-8

[7] Kiczales, G. et al: An overview of Aspect J.
Lecture Notes in Computer Science, 2072:327-
355, 2001.

[8] Kiczales, G. et al: Aspect-oriented
programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of
LNCS, pp. 220-242, 1997.

[9] Kienzle, J. and Guerraoui, R.: Aspect oriented
software development AOP: Does it make
sense? The case of concurrency and failures. In
B. Magnusson, editor, Proc. ECOOP 2002,
pages 37-61. Springer Verlag, June 2002.

[10] Kollár, J.: Process Functional Programming,
Proc. ISM'99, Ro�nov pod Radho�t m, Czech
Republic, April 27-29, 1999, pp. 41-48.

[11] Kollár, J.: PFL Expressions for Imperative
Control Structures, Proc. Scient. Conf. CEI'99,
October 14-15, 1999, Her any, Slovakia,
pp.23-28.

[12] Kollár, J.: Control-driven Data Flow, Journal of
Electrical Engineering, 51(2000), No.3-4,
pp.67-74.

[13] Kollár, J.: Comprehending Loops in a Process
Functional Programming Language, Computers
and Artificial Intelligence, 19 (2000), 373�388.

[14] Kollár, J.: Object Modelling using Process
Functional Paradigm, Proc. ISM'2000, Ro�nov
pod Radho�t m, Czech Republic, May 2-4,
2000, pp.203-208.

[15] Kollár J., Václavík P., Porubän J.: The
Classification of Programming Environments,
Acta Universitatis Matthiae Belii, 10, 2003, pp.
51-64, ISBN 80-8055-662-8

[16] Lämmel, R.: Adding Superimposition to a
Language Semantics, Foundations of Aspect-
Oriented Langauges Workshop at AOSD 2003,
pp.61-70.

[17] Novitzká, V.: Computer Programming and
Mathematics, Fifth International Scientific
Conference �Electronics Computers and
Informatics´2002�, 10.-11.10.2002, Ko�ice-
Her any, Technická univerzita v Ko�iciach,
2002, 5, pp. 31-36, ISBN 80-7099-879-2

[18] Novitzká, V.: About the theory of correct
programming. February 2003, Elfa s.r.o,
Ko�ice, 117pp. (in Slovak)

[19] Novitzká, V.: Mathematical language in
programming, Acta Electrotechnica et
Informatica, 3, 3, 2003, pp. 31-35, ISSN 1335-
8243

[20] Parali , M.: Mobile Agents Based on
Concurrent Constraint Programming, Joint
Modular Languages Conference, JMLC 2000,
September 6-8, 2000, Zurich, Switzerland. In:
Lecture Notes in Computer Science, 1897,
pp.62-75.

32 Process Functional Properties and Aspect Language

[21] Peyton Jones, S.L., Wadler, P.: Imperative
functional programming, In 20th Annual
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
January 1993, pp.71-84.

[22] Peyton Jones, S.L., Hughes, J. [editors]: Report
on the Programming Language Haskell 98 - A
Non-strict, Purely Functional Language.
February 1999, 163 p.

[23] Porubän, J.: Profiling process functional
programs. Research report DCI FEII TU
Ko�ice, 2002, 51.pp, (in Slovak)

[24] Porubän, J.: Time and space profiling for
process functional language, Proceeding of the
7th Scientific Conference with International
Participation: Engineering of Modern Electric
'03 Systems, May 29-31, 2003, Felix Spa -
Oradea, University of Oradea, 2003, pp. 167-
172, ISSN-1223-2106

[25] Porubän, J.: Functional Programs Profilation.
PhD. Thesis, March 2004, DCI FEII TU
Ko�ice, 87.pp, (in Slovak)

[26] Sullivan, G. T.: Aspect-oriented programming
using reflection and meta-object protocols.
Comm. ACM, 44(10):95�97, Oct. 2001.

[27] �imo ák, S., Hudák, �.: Using Petri Nets and
Process Algebra in FDT Interfacing, the Fifth
International Scientific Conference �Electronic
Computers and Informatics´2002�, October
2002, Ko�ice - Her any, 2002, pp. 8-13, 80-
7099-879-2

[28] �imo ák, S., Hudák, �.: APC - Algebra of
Process Components, EMES '03, May 29.-31.
2003., Felix Spa, Oradea, 2003, pp. 57-63,
ISSN 1223 � 2106

[29] Václavík, P.: Abstract types and their
implementation in a processs functional
programming language. Research report DCI
FEI TU Ko�ice, 2002, 48.pp, (in Slovak)

[30] Václavík, P., Porubän, J.: Object Oriented
Approach in Process Functional Language,
Proceedings of the Fifth International Scientific
Conference �Electronic Computers and
Informatics´2002�, October 10.-11. 2002,
Ko�ice - Her any, 2002, pp. 92-96,
80-7099-879-2

[31] Václavík, P.: The Fundamentals of a Process
Functional Abstract Type Translation,
Proceeding of the 7th Scientific Conference
with International Participation: Engineering of
Modern Electric '03 Systems, May 29-31,
2003, Felix Spa - Oradea, University of
Oradea, 2003, pp. 193-198, ISSN-1223-2106

[32] Václavík, P.: Implementation of Abstract Types
in a Process Functional Programming
Language, PhD. Thesis, March 2004, DCI FEII
TU Ko�ice, 108 pp, (in Slovak)

[33] Vokorokos, L.: Data flow computing model:
Application for parallel computer systems
diagnosis, Computing and Informatics, 20,
(2001), 411-428.

[34] Wadler, P.: The essence of functional
programming, In 19th Annual Symposium on
Principles of Programming Languages, Santa
Fe, New Mexico, January 1992, draft, 23 pp.

[35] Wand, M.: A semantics for advice and
dynamic join points in aspect-oriented
programming. Lecture Notes in Computer
Science, 2196: 45-57, 2001.

BIOGRAPHY

Ján Kollár was born in 1954. He received his MSc.
summa cum laude in 1978 and his PhD. in
Computing Science in 1991. In 1978-1981 he was
with the Institute of Electrical Machines in Ko�ice.
In 1982-1991 he was with the Institute of Computer
Science at the University of P.J. �afárik in Ko�ice.
Since 1992 he is with the Department of Computers
and Informatics at the Technical University of
Ko�ice. In 1985 he spent 3 months in the Joint
Institute of Nuclear Research in Dubna, Soviet
Union. In 1990 he spent 2 month at the Department
of Computer Science at Reading University, Great
Britain. He was involved in the research projects
dealing with the real-time systems, the design of
(micro) programming languages, image processing
and remote sensing, the dataflow systems, the
educational systems, and the implementation of
functional programming languages. Currently the
subject of his research is the implementation of
multi-paradigmatic languages.

