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SUMMARY 
This paper deals with modelling of the linear induction motor (LIM). Linear induction motors fall into the category of 

special electrical machines in which the electric energy is converted directly into mechanical energy of translatory motion. 
LIMs are the most popular ones from the group of linear electric motors, which consists also of DC motors, synchronous 
motors, reluctance motors, stepping motors, oscillating and hybrid motors. 

In the paper mathematical model of a tubular LIM is described by a set of differential equations, which are best solved by 
numerical methods. Knowledge of the system behaviour under different operating conditions is necessary for proper 
selection of a LIM for an electrical drive system. Both electromagnetic and mechanical steady state and transient 
characteristics are important. In many cases, general information about how electrical parameters of the drive (including the 
control circuit, inertia, friction, and stiffness of the system) influence the transients is necessary, and methods of modelling 
and digital simulation are the most useful. Nowadays, digital simulation is predominant. 

In the case of digital simulation, the mathematical model presents a digital system that is programmed on the basis of 
mathematical equations describing a real tubular linear induction motor. Finally the calculated values are compared with 
those measured on a real LIM.  
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1. INTRODUCTION 
 

Linear induction motors fall into the group of 
that special-purpose electrical drives that transform 
electric energy directly to the translating motion 
mechanical energy.  

Geometrically is the traditional asynchronous 
motor arranged in such a way that the rotating 
circular magnetic field move along circumference of 
the air gap in synchronous speed, while the 
electromagnetic forces generated between electrical 
circuits on the stator bring about the rotor rotary 
movement.  

However, the very same magnetic field and 
forces may elicit linear movement too. Geometric 
arrangement of a flat linear motor with single-sided 
arrangement can be imagined so that the traditional 
induction motor primary part would be cut up in 
halves along the radial plane, and then it would be 
uncoiled. Magnetic field of in this way arranged 
motor would move gradually in the air gap along the 
primary part and due to the electromagnetic force 
the machine secondary part would move in straight 
direction.  

The LIM can be designed either as flat one-sided 
devices (with short secondary or short primary part, 
respectively) or as two-sided ones. One of other 
possible arrangements of the linear induction motor 
is the one with cylindrical air gap (so called tubular 
motor), which induced linear motion in the cylinder 
axis direction. Such a motor would be arrived at if 
the flat one-sided linear motor would be coiled into a 
cylinder around the axis running parallel with the 
magnetic field movement direction. 

LIMs are utilized to induce force (most 
frequently, actuators run at insignificant speeds), to 
induce energy (boosters, e.g. at lift-off of the 

aircraft) or to induce high powers and speeds (in 
transportation systems). The LIM are extensively 
utilized within transportation systems, ranging from 
small cargo drives (used at airports, exhibitions, 
elevators, etc.) to transportation of bulky loads. Of 
significant importance are also in manufacturing 
processes (power hammers, mills, presses, textile 
machines, robotics, etc.). A highly important domain 
of their utilization is also the field of industrial 
testing and research (simulation of car collisions, 
airplane and car models excessive accelerations in 
wind tunnels, etc.) The most important LIM 
application prospective is seen in the high-speed 
transportation system based on the magnetic air 
pillow hovering principle. 
 
2. THE TUBULAR LIM MATH MODEL 

The tubular linear asynchronous motor, intended 
for inducing force � the actuator, will be considered 
in the following. At deriving the linear motor 
mathematical model we took the following 
assumptions to be true: 

primary windings are symmetrical 
only the fundamental harmonic of MMF 
exists 
there is no neutral wire 
the LIM is connected to an infinite bus 
there are no slots and the air-gap is uniform 
there are none longitudinal end effects  
the magnetic circuit is unsaturated 

 
The machine mathematical model can be, both in 

the steady and the transient states, expressed by a 
system of non-linear differential equations.  
For expressing the motor mathematical model two 
approaches were used: 
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mathematical description expressed by use of 
spatial vectors (physically more figurative 
approach)  
the equations state notation (more general 
approach) 

 
2.1  The linear induction motor equations 

Made use of at creating the LIM mathematical 
model was one of the alternatives of how to simplify 
model of the motor � i.e. transformation of 3-phase 
to an equivalent 2-phase system, by which number 
of equations to be solved decreased.  

Based on the analogy between the linear 
induction motor and rotary induction motors the 
well-known equations, in the rotating system x, y, 
for rotary movements can be, using the below 
equations: 

v    and        r  , (1) 

 
rewritten to equations holding for the tubular linear 
induction motor: 
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The motor internal force: 
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The relation expresses the movement equation: 
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The primary linkage fluxes:  
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The secondary linkage fluxes: 
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 Rendered from equations (8) to (11) are currents 
of both the primary and secondary parts, while for 
the sake of their simpler form introduced was the 
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 Following adaptation and subsequent installing 
of equations (12) to (15) into relations expressed by 
equations (2) to (5) obtained have been the equations 
(16) to (19):  
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which completed with equations (6) and (7) 
represent the linear motor flux mathematical model, 
where:  
 
F, FL -  force and load force 
i1x, i1y, i2x, i2y -  x, y components of stator 

and rotor current 
L1, L2, Lh -  stator, rotor and main 

inductance 
m -  mass 
R1, R2 -  stator and rotor winding 

resistance  
u1x, u1y    -  x, y components of stator 

voltage  
v1,  v -  synchronous and 

mechanical velocity  
 -  leakage factor  
  - pole pitch 

1x, 1y, 2x, 2y -  x, y components of stator 
and rotor magnetic fluxes  

  - angular frequency 
 
where subscript 1 belongs to stator variables and 
subscript 2 belongs to rotor variables. 
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2.2  The state model of the LIM 
 
 Whereas the linear motor mathematical model is 
at disposal in the form of a system of differential and 
algebraic equations derived from the description can 
be, by appropriate introduction of state variables, 
state equations. For the state quantities it is highly 
convenient to select significant drive variables such 
as currents, magnetic fluxes, the speed, trajectory, 
etc.  
The general state equation for the ac machines can 
be written as:  

)t()t()t(
dt

d
BuAXX , (20) 

 
where  is the two-component 

vector of electromagnetic state variables, 
 the input function and A the ac 

machine matrix whose elements are functions of 
synchronous speed and machine shaft angular speed 
and B is input matrix. The vector components X
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may be any two vectors arbitrarily selected from 
among the linkage flux vectors or currents vectors. 
The input is always a pair of voltage vectors u1, u2. 
Taking as the state variables for the LIM the stator 
and rotor flux linkage vectors then for a 
synchronously rotating system of coordinates x, y, 
state equation (20) of the LIM can be resolved into 
two components to obtain: 
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 The motion equation was obtained by 
introducing equations (12), (13) into equation (6) 
and by subsequent introduction into equation (7). 
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 The stator current components derivations were 
obtained by substituting equations (16)-(19) into 
deriving equations (12) and (13). 
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3. SIMULATIONS RESULTS 
 

The analytical solution to the system of 
equations in (16-19) and (6-7) or in (21-24) is very 
difficult due to non-linearity. The problem is simple 
when computers and standard library routines are 
used for solving non-linear differential equations. 
Thus, digital simulation of a linear induction motor 
is equivalent to finding a numerical solution to the 
equations, along with graphical displaying of the 
results. 

Testing of the mathematical model and 
measurement were provided on a tubular linear 
induction motor TLM-60 with the following 
parameters: 
 
U = 3 x 380 V/50 Hz, IN = 5.6 A, P=3100 W, v = 1.8 
m.s-1, cos  = 0.841, FN = 200 N, m1 = 6 kg, R1 = 

15.38 , R2 = 47.6 , X1  = X2  = 14.9225 , Xh = 
33.3333 , v1 = 3.675 m.s-1,  = 0.036 m, m2 = 1.1 kg 
 
 Parameters of the tubular linear induction motor 
needed for solving the system of the equations was 
found experimentally at v=0 and are assumed 
constant despite of their variation with slip. 

The modelled waveforms of: the stator current 
components, stator magnetic flux components and 
the rotor linkage magnetic flux for the case of motor 
no-load start-up, at rated loading:  t = 0,25s � 100% 
FN, as well as at altered loading:  t = 0,45s to 75% FN

are shown in figures below (Fig. 1, Fig. 2, Fig. 3). 
 

 
 

Fig. 1  Modelled waveforms of the stator current 
components for start-up, at  t = 0,25s rated motor 

loading and at t = 0,45s motor derating 
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Fig. 2  Modelled waveforms of the stator magnetic 
linkage flux at start-up, at t= 0,25s rated loading of 

the motor and at t = 0,45s  motor derating 

Fig. 3  Modelled waveforms of the rotor magnetic   
linkage flux at start-up, rated loading of the motor: 

at t = 0,25s and motor derating at 
t = 0,45s 

  
 The waveform of the modelled force generated 
by the motor for the case of motor unloaded start-up, 
at rated loading at t = 0,25s � 100% FN, and at 
further changes in loading: at t = 0,45s � 75% FN, at 
t = 0,65s �50% FN and at t = 0,8s �25% FN is shown 
in Fig. 4.  
 

 
Fig. 4  Modelled waveforms of the magnetic force at 

start-up, rated loading of the motor: 
at  t = 0,25s and further motor loading changes 

 
4. MEASUREMENT AND COMPARISON 

Measurements were provided on TLM-
60 tubular linear induction motor with the above-
mentioned parameters. Fig. 5 shows comparison of 
calculated and measured velocity v(t) of the tubular 
linear induction motor for starting mode. 
 Good coincidence between calculations and 
measurements shows that, notwithstanding the 
assumptions made, the system of equations in (16-
21) or in (23-26) is useful for digital simulation and 
modelling of transients in electrical drives with 
tubular LIMs. 

Fig. 5  Transient characteristics v(t) of the LIM for  
starting mode:  - calculations, + measurement 

 
5. CONCLUSION 
 

In the paper, the mathematical model of a tubular 
linear induction motor is described by a set of 
differential equations and the state model, which are 
most conveniently solved using numerical methods. 
Good agreement between calculations and 
measurements proves that the mathematical model is 
useful for digital simulation and modelling of 
transients in electrical drives with tubular linear 
induction motors. 
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