
16 Acta Electrotechnica et Informatica  No. 3, Vol. 3, 2003 
 

THEORY OF THE PASSIVE COMPENSATION OF A THREE-PHASE 
NONLINEAR LOAD 

 
 

*Daniel MAYER, **Petr .ROPË. 
*Faculty of Electrical Engineering, University of West Bohemia Pilsen, 

Sady P tat icitntk  14, 30614 Plze , Czech Republic, tel.: 377634633, E-mail: mayer@kte.zcu.cz 
** Faculty of Electrical Engineering, University of West Bohemia Pilsen, 

Sady P tat icitntk  14, 30614 Plze , Czech Republic, tel.: 377634639, E-mail: pkropik@kte.zcu.cz 
 
 

SUMMARY 
An algorithm is described for defining passive parameters of two-poles RLC, with whose help it is possible to compensate 

a three-phase load. The method is valid for sinusoidal or nonsinusoidal, balanced or unbalanced three-phase power system 
with linear or nonlinear load. The problem is formed as an optimisation problem for minimizing losses in line. Given 
calculation method is illustrated by three numerical problems. It is possible to modify this method even for solution of other 
power engineering problems, e.g. for design of filters enabling increased quality of transmitted electric energy by 
suppressing unwanted higher harmonics in network. 
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1. INTRODUCTION 
 

Let us describe the method for calculation of 
parameters of two-poles RLC for non-linear load of 
inductive character. Compensation two-pole is 
formed by series connection of static condenser with 
reactance coil that limits switching impulses of 
current as well as higher harmonics current going 
through compensation condenser. For non-sinusoidal 
currents the notion of reactive power is ambiguous 
(see e.g. [3]), so it will not be used, the focus will be 
on active power and calculation will be formed as 
optimization problem. The objective function will be 
losses in line and we will define such parameters R, 
L, C  of compensation two-poles that minimize these 
losses. In comparison with our earlier work [1] we 
will not use the analytical solution and the 
calculation will be done numerically using standard 
program set Optimization Toolbox, which is part of a 
computation system  MATLAB. 

 
2. DEFINING THE SOLVED PROBLEM 

 
We will deal with the following system 

configuration: three-phase non-linear load of 
inductive character is connected to balanced three-
phase network, whose voltage are sinusoidal 
functions with period T, Fig. 1. The load draws 
currents i1(t), i2(t), i3(t) that are periodical, generally 
unbalanced and nonsinusoidal.  To the load termi-
nals shunt compensators are attached that contain 
two-poles RLC. The inductance of reactance coils is 
chosen so that resonance frequency fr of the two-
poles is distanced from the frequency of higher 
harmonics generated by the nonlinear load, usually  
fr = 189 Hz or fr = 134 Hz. 

The network is connected with the load through 
line with currents il1(t), il2(t), il3(t). As for parameters 
(R,L) let us consider that the influence of voltage 
drop in line on the terminal voltage of load can be 
neglected so that network-voltage rigidity can be 

considered sufficient. Let us suppose that time 
course of voltage on load terminal is known. We 
define parameters R, L, C of compensation two-
poles, for which the losses in line are minimal. Or, 
from mathematical point of view, we minimize the 
functional, which is objective function 
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3. DEFINING OF OPTIMIZATION 

PROBLEM 
 

3.1.  Algorithm of calculation of compensation of 
two-poles parameters 

 
Instantaneous values of phase voltages and  line 

voltages of a balanced network are 
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Fig. 1  Three-phase circuit structure 
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Instantaneous values of currents consumed by 

the load are supposed to be given. 
Currents in wye-connected compensation two-

poles  Ri Li Ci (i = 1,2,3) are 
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where 
1
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The reactance coil has inductance  Li , which is 
defined so that the two-pole has the chosen 
resonance frequency  fr , thus 
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Let its resistance be k-multiple of inductive 
reactance, thus 
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Then phase angle 1 2 3 0, / 2 ,  
when
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it is possible to express equation (5) using equations 
(6) and (7) in the form 
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where 
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instantaneous currents in line are calculated from 
equations 
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These currents are substituted to eq.(1), and so 
the optimization problem is formulated. The 
solutions are the parameters of compensation two-
poles. 

 
3.2.  Special cases  

 
If the load is linear, unbalanced and of 

inductance character, it draws currents  
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For compensation with static condensers only  

0( 0, 0, then )i iL R , is 1/A  and  
/ 2.  

 
3.3.  Numerical minimization of the objective 

function (1) 
 
All above-mentioned formulas were imple-

mented using programming language of compu-
tational system MATLAB and MATLAB 
Optimization Toolbox. At the beginning current 
amplitudes I12, I23 and I31 had been computed ± see 
equations (5). Constants definitions and auxiliary 
computations are not given here, as it is mentioned 
above. In the second step variables A1, A2 a A3 were 
computed using equations (10) 
A1=(0.1.^2).*((omg.^2)./(omg0.^4))+(((omg./ 

(omg0^2))-(1./omg)).^2); 

A2=(0.1.^2).*((omg.^2)./(omg0.^4))+(((omg./ 

(omg0^2))-(1./omg)).^2); 

A3=(0.1.^2).*((omg.^2)./(omg0.^4))+(((omg./ 

(omg0^2))-(1./omg)).^2); 

Computation followed with calculating of 
relevant amplitudes according to equation (5) 
I12=C1.*(U12./sqrt(A1)); 

I23=C2.*(U23./sqrt(A2)); 

I31=C3.*(U31./sqrt(A3)); 

and currents in compensation two-poles using 
equation (4) 
i12 = I12.*sin(omg.*t+(pi./6)-psi1); 

i23 = I23.*sin(omg.*t-(pi./2)-psi2); 

i31 = I31.*sin(omg.*t+(5.*pi./6)-psi3); 

Before current in the load were calculated, we 
had computed following auxiliary variables, which 
represents final angles. We need to calculate these 
angles to make program code more transparent and 
we need to know it in the next part of computation. 
ang_i1 = omg.*t-(pi./3); 

ang_i2 = omg.*t+((-52.*(2.*pi./360))-

((2./3).*pi)); 

ang_i3 = omg.*t+((-

68.*(2.*pi./360))+((2./3).*pi)); 

Calculation of current in the load according to 
equation (12) 
i1=I1.*sin(ang_i1); 

i2=I2.*sin(ang_i2); 

i3=I3.*sin(ang_i3); 

The part of program code shown above generated a 
course of currents in case of linear load. In case of 
non-linear load this course must been adjusted 
i1 = ~((mod(ang_i1,pi) < angle_4_t) & 

(mod(ang_i1,pi) > 0)).*i1; 
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i2 = ~((mod(ang_i2,pi) < angle_4_t) & 

(mod(ang_i2,pi) > 0)).*i2; 

i3 = ~((mod(ang_i3,pi) < angle_4_t) & 

(mod(ang_i3,pi) > 0)).*i3; 

Some parts of the currents i1, i2 and i3 courses 
had been levelled with the zero by this part of 
program code, according to value of variable 
angle_4_t. This method produced required course 
of currents. At the end of computation the courses of 
currents il1, il2 and il3 were calculated with help of 
conditions (11) 
il1=i1+i12-i31; 

il2=i2+i23-i12; 

il3=i3+i31-i23; 

Final sum of squares of these currents was 
computed  
y=(il1.^2)+(il2.^2)+(il3.^2); 

The numerical integration was based on equation 
(1). A standard MATLAB functions quad and 
quadl  can be used. These functions used recursive 
adaptive Simpson quadrature algorithm. Function 
quad(fun, a, b) approximates the integral of function 
fun from a to b  within an error of 10-6. Function fun 
accepts  vector x and returns  vector y. Using form 
quad(fun, a, b, tol) uses an absolute error tolerance 
tol instead of the default (10-6). In our calculations it 
was needed to set this tolerance usually between 10-7 
and 10-9 to reach an adequate accuracy of integration 
± see course of integrated function in case of non-
linear and unbalanced load (Fig. 5). For this reason 
we used function quadl instead of quad. The 
function quadl should be more efficient with high 
accuracies and smooth integrands. 

Finally we used this function in the following 
form 

quadl('fun',0,T,1e-8,[],C1,C2,C3) / T; 

Additional arguments C1, C2 and C3 were 
passed directly to function fun(t,C1,C2,C3).  

Result of this integration represents our objective 
function. To solve optimization problem, we applied 
standard MATLAB functions fminsearch, fminunc 
and fmincon included in MATLAB Optimization 
Toolbox. 

Function fminsearch is generally referred to as 
unconstrained non-linear optimization. We used it in 
form 
options = optimset('fminsearch'); 

options.TolFun=1e-15; 

options.TolX=1e-15; 

options.MaxFunEvals=1000; 

[min,fval,exitflag,output]=fminsearch(@object

ive_f,input,options); 

A variable options represent set of initial 
parameters of this function. Useful parameters are 

Display ± Level of display. 'off' 
displays no output; 'iter' 
displays output at each 
iteration; 'final' displays 
just the final output; 
'notify' (default) displays 

output only if the function 
does not converge. 

MaxFunEvals ± Maximum number of 
function evaluations allowed. 

MaxIter ± Maximum number of 
iterations allowed. 

TolFun ± Termination tolerance on the 
function value. 

TolX ± Termination tolerance on x. 
 

Function fminsearch uses algorithm based on the 
Nelder-Mead simplex direct search method. This is a 
method that does not use numerical or analytic 
gradients as in fminunc or fmincon (see below). If n 
is the length of variable, a simplex in n-dimensional 
space is characterized by the n+1 distinct vectors 
that are its vertices. In two-dimensional, a simplex is 
a triangle; in three-dimensional, it is a pyramid. At 
each step of the search, a new point in or near the 
current simplex is generated. The function value at 
the new point is compared with the function's values 
at the vertices of the simplex and, usually, one of the 
vertices is replaced by the new point, giving a new 
simplex. This step is repeated until the diameter of 
the simplex is less than the specified tolerance. 
When the solving problem is highly discontinuous, 
fminsearch may be more robust than fminunc. 

Function fminunc is generally referred to as 
unconstrained non-linear optimization of 
multivariable function. We used it in form 
options = optimset('fminunc'); 

options.TolFun=1e-15; 

options.TolX=1e-15; 

options.MaxFunEvals=1200; 

options.GradObj='on'; 

[min,fval,exitflg,output,grad,hessian]=fminun

c(@objective_f,input,options); 

A variable option represents set of initial 
parameters of this function as above. Many 
parameters are same as parameters of the function 
fminsearch. We used special parameter GradObj sets 
'on' 

GradObj ± gradient for the objective 
function. User in objective 
function defines it. The 
gradient must be provided to 
use the large-scale method. 
We used it as an optional 
parameter for the medium-
scale method. 

 

Function fminunc uses algorithm based on the 
BFGS (Broyden, Fletcher, Goldfarb, Shanno) Quasi-
Newton method with a mixed quadratic and cubic 
line search procedure (in case of medium-scale 
optimization). This method uses the BFGS formula 
for updating the approximation of the Hessian 
matrix. The DFP (Davidon, Fletcher, Powell) 
formula, which approximates the inverse Hessian 
matrix, is selected by setting the HessUpdate
parameter to 'dfp' (and the LargeScale
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parameter to 'off'). In case of Large-Scale 
Optimization an algorithm subspace trust region 
method based on the interior-reflective Newton 
method is used. Each iteration involves the 
approximate solution of a large linear system using 
the method of preconditioned conjugate gradients 
(PCG). 

When it is needed to eliminate improper values 
of variables (e.g. negative values of capacitance) we 
implement function fmincon. This function finds a 
minimum of a constrained non-linear multivariable 
function. We used it in form 
mat_A=[-1,0,0;0,-1,0;0,0,-1]; 

vec_b=[0;0;0]; 

options = optimset('fmincon'); 

options.TolFun=1e-15; 

options.TolX=1e-20; 

options.TolCon=1e-15; 

options.MaxFunEvals=800; 

options.GradObj='on'; 

[min,fval,exitflag,output,lambda_v,grad_v,hes

sian_v]=fmincon(@criteria_f, 

input,mat_A,vec_b,[],[],[],[],[],options); 

 

Variable mat_A represents the matrix A of the 
coefficients of the linear inequality constraints and 
vec_b represents corresponding right side vector b 
(i.e. Ax <= b). 

Function fmincon uses algorithm based on the 
Sequential Quadratic Programming (SQP) method 
(in case of medium-scale optimization). Quadratic 
Programming (QP) subproblem is solved at each 
iteration. An estimate of the Hessian of the 
Lagrangian is updated at each iteration using the 
BFGS formula (see fminunc above). A line search is 
performed using a merit function. The QP 
subproblem is solved using an active set strategy. 

 
4. NUMERICAL PROBLEMS  

 
4.1.  Linear balanced load  

 
For comparison of the results obtained in 

numerical calculation with analytical solution we 
use the following simple problem. Line voltages of 
balanced network are 

3 380V,U 2 100 .f

The load is linear (i. e. it draws harmonic 
currents) and symmetrical. Drawn currents are 
expressed in equation (12), where 

1 2 3 10A ,I I I I   
1 2 3 60 .  

Compensation is done using static condenser in 
wye connection. Currents 12 23 31, ,i i i acc. Eq. (4), 
where acc. Eq. (9) 

43,8.10ij iI C  (13) 

Substituting for  1 2 3, ,i i il l l  in eq. (1) and 
solving optimization task we get 

5
1 2 3 4,188.10 FC C C , 

for       Fmin = 37,5. (14) 
For judging the environment of the found 

minimum of functional F according eq. (1) there is 
shown in Fig. 2 function 

5
1 2 3( , ) p i 4,188.10 FF F C C C  

in 3D representation. Optimization was done using 
three above-mentioned methods and the same results 
were achieved with the difference that function 
fmincon and fminunc showed higher accuracy of the 
result, but only in higher orders, which does not 
have any practical meaning. 

 
It is possible to solve this symmetrical problem 

also analytically, (see e.g. 2 ). Obviously C1 = C2 = 
C3 = C, where 

5sin 4,188.10 F
3
IC

U
 (15) 

 
4.2.  Linear unbalanced load 

 
Network   is the same as in the previous example: 

 

Fig. 2  Objective function for problem 4.1
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3 380 V, = 100 .U  

The load is linear, unbalanced; drawn currents 
are expressed by equations (12), where  

1 2 3

1 2 3

10A, 8A, 12 A

60 , 52 , 68

I I I  (16) 

Compensation is done using two-poles 
( 1,2,3)i i iR L C i for the following values: 

-1
r 0189Hz, 2 189s , 0,1.f k  (17) 

Through minimization of the functional (1) we 
obtain: 

5
1

5
2

5
3

2,826.10 F,
4,015.10 F,
4,846.10 F

C
C
C

 

According eq. (6) is 

1

2

3

0,1577 H ,
0,1110 H ,
0,0919 H

L
L
L

 

And according eq. (7) is 

1

2

3

4,954 ,
3, 486 ,
2,8889

R
R
R

 

This case was solved again using all three 
methods. The best effect was achieved using 

function fminsearch. In case of function fminunc 
and fmincon the calculation got much longer and 
taking into consideration the character of the 
objective function course some numerical 
instabilities occurred as well. In Fig. 3 there is 3D 
representation of the objective function. 
 
4.3.  Nonlinear unbalanced load 

 
The network is the same as in the previous 

problems. Instantaneous values of currents drawn by 
the load are (Fig. 4) 

             0                            for   0   t      
ii  =  

Ii sin( t    i)  for       t    2   , i = 1, 2, 3 

where
1 1 2 2 3 3, 2 / 3, 2 / 3

Calculation is done for 45  and for values 

1 2 3 1 2 3, , , , ,I I I  according eq. (16).  

 
Compensation is done using two-poles 

( 1,2,3)i i iR L C i , for which eq. (17) is valid. Time 
dependency of function 2 2 2

1 2 3( )i i il l l  is in Fig. 5.  
Minimizing functional (1) we get 

 
5

1
5

2
5

3

2,841.10 F,
4,184.10 F,
4,645.10 F

C
C
C

 

1

2

3

0,1568 H ,
0,1065 H,
0,0959 H

L
L
L

 

1

2

3

4,926 ,
3,345 ,
3,013

R
R
R

 

Application of the three above-mentioned 
methods had the same effect as the previous cases.  

 

 

Fig. 3  Objective function for problem 4.2 

Fig. 4  Time-dependency of the current of the load
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5. CONCLUSION 
 
In this paper a method has been shown that 

enables to define the optimal values of parameters of 
compensation two-poles RLC, providing rigid 
supply mains. The proposed theory is valid for 
sinusoidal or nonsinusoidal, balanced or unbalanced 
three-phase power system. It can be easily extended 
to the power system with zero-sequence current, 
and/or voltages. Minimization of losses in line is not 
the only optimization problem solution suitable for 
practice.  Objective function (1) can be formulated 
so that it is possible to design a filter for suppression 
of certain harmonic parts in time course of currents 
drawn from the network. 
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