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SUMMARY 
The contribution deals with the use of artificial intelligence methods in the life diagnostics of Relanex insulating material 

that is applied as insulation of electrical machine windings. For example, neural networks are one applicable method. The 
method belongs to the appropriate tools that provide the modelling, identification and simulation of technological systems 
and units. In such a case, the insulating material is used as a modelled and identified system. We have used the above-
mentioned neural networks for the diagnostics of insulating materials that were programmed in Matlab 6 environment. All 
simulations and the values calculated were also obtained by means of this product. 
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1. INDRODUCTION 
 

The life of insulating systems in electric rotary 
machines is strongly dependent upon electric and 
thermal properties of insulating material used. In this 
study, Relanex insulating material was used for the 
modelling and identification of the system. The life 
of such material will change during the life of an 
electric rotary machine, and this is a non-linear 
relationship. This non-linearity may be simulated by 
the appropriate artificial neural networks that, on the 
basis of the input data, will determine the output 
coefficient characterising the life of a machine. The 
input data are obtained by a non-destructive method 
which is characterised by diagnostic quantities Ba, 
Bv and Uk, including the output quantity, i.e. 
breakdown voltage Up, which was adopted from 
literature [1]. 

For the modelling of insulating material, we have 
used a neural network that was trained by the 
Levenberg-Marquardt optimization method (LM). 
The Levenberg-Marqurdt optimization method 
belongs to the group of the standard optimization 
methods as well as the Newton's method or a non-
linear solution by the least square method. Unlike 
the gradient methods, the  

Levenberg-Marquardtova method is an 
approximation of the Newton's method. This opti-
mization technique is much powerful compared to 
the gradient methods, however its disadvantage is in 
a higher PC memory capacity. In this paper, we have 
used a Neural Network toolbox, which incorporates 
a neural network with the Levenberg-Marquardt 
optimization method. 

The neural network that was used as a model in 
the identification process of Renalex insulating 
material is illustrated in Fig. 1. 

The most important assumption of the 
Levenberg-Marquardt method is the existence of the 
error function Err (w) which should be minimized in 
view of the weighing vector W of the neural 
network. The error Err is calculated from the 
following equation. 

 
 
Fig. 1  The identification process of insulating 

material by a neural network 
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with N = the number of elements in a training set, 
Up = a training/testing output that is measured at 
insulating material, and Ups = output which was 
determined by a neural network. 

 
The architecture of a neural network is specified 

on the basis of the number of the input/output data. 
We have used a three-layer neural network that is 
the neural network with one hidden layer. The input 
layer involves three separate neurones for three input 
quantities, and the number of 6 and 7 neurones with 
the transfer function of hyperbolic tangent was se-
lected in the hidden layer, and then the output layer 
of the neural network contains one output neurone 
with the linear transfer function. 
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Training data (see Fig. 2 and Fig. 3) forms 1,000 
samples of the input/output data on which the neural 
network is trained. Considering a great time demand 
and difficulties to obtain the data, we have used a 
training data set of the sampling function that was 
created by the approximation of the data measured 
by the 10th degree polynomial function. This method 
of obtaining the trai ning data was applied to provide 
a higher capability of generalization of the neural 
network to "unknown" test data. 

The test data (see Fig. 5) involves 61 samples of 
the input/output data that was obtained by the non-
destructive measurement on Relanex insulating 
material and which is "unknown" because the neural 
network has not been trained for such data. The 
neural network generalizes the appropriate output 
Ups.  

 
 

 
 

Fig. 2  Normalized input training data 
 
 

 
 
Fig. 3  The curve of output Up and simulated 

output Ups for the neural network with 7 neurones 
in a hidden layer 

 
 

Because inputs Ba, Bv and Uk and the output Up 
are included in the sets with the ranges of 
significantly different values, the neural network has 
not been able to train. Hence before the training 
itself the trained data Ba, Bv and Uk was normalized 
in the range of [-1; 1] (see Fig. 2, 3 and 5), and this 
method was also used to normalize the required 
output Up. With the values of the training data 
modified in this way, there are not any problems on 

the input of the neural network. After training the 
neural network and during the simulation with the 
training and testing data, it is necessary to 
denormalize the output of the neural network 
according to the original range of the values on the 
trained output Up. The output denormalization of the 
neural network gives a simulated output Ups which 
has its unit as for breakdown voltage Up measured 
with the real material samples. The normalization 
and denormalization data processes are illustrated in 
Fig. 2 and their application is necessary for both the 
training and testing data. 

 
 

 
 
 

Fig. 4  Normalization and denormalization of the 
input/output data 

 
 
In the case of this neural network, the training 

and testing data is different, which means that the 
neural network is jeopardized by the effect called 
"over-training" reducing the capability of 
generalization during the processing of unknown test 
data. Over-training of the neural network is 
demonstrated in such a way that the neural network 
trained for a lower error of the training data shows a 
higher error of the test data compared to the neural 
network trained for the lower error of the training 
data. This phenomenon has been verified during the 
identification process and recorded in Tab. 1 and 2 
and in chart no. 8. 

To remove this phenomenon, it is necessary that 
all weights and biases of neurones would be 
recorded and stored in compliance with the training 
sequence. For each step of training, we also carried 
out the simulation of the test data for the neural 
network with all stored weights and biases. The 
neural network which shows the minimum mean 
absolute error (see Tab. 1 and 2) for the simulation 
of "unknown" test data is considered as an optimized 
neural network.
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2. RESULTS OF THE IDENTIFICATION AND 
SIMULATION 

 
The results of the identification and simulation of 

insulating materials for the neural network with six 
neurones in a hidden layer are recorded in Tab. 1, 
while the neural networks with seven neurones in a 
hidden layer are shown in Tab. 2.  
 
 
Tab. 1  The simulation of the neural network with 6 

neurones in a hidden layer 
 

Tested with the data measured 
Absolute error Relative error  
Max. Mean Max. Mean 

Minimum 
error 
value 

288.1 
V 

90.4 
V 

0.638 
% 

0.178 
% 

Training step 
with minimum 

error 
4 

steps 
5 

steps 
5 

steps 
2655 
steps 

3,000 training steps of neural network 
Absolute error Relative error  
Max. Mean Max. Mean 

Tested with 
the training 

data 
1.7  V 0.2  V 0.005 

% 
5e-4 
% 

Tested with 
the data 

measured 

622.6 
V 

93.5 
V 

0.999 
% 

0.180 
% 

 

5 training steps of neural network 
Absolute error Relative error  
Max. Mean Max. Mean 

Tested with 
the training 

data 

79.8 
V 

22.8 
V 

0.232 
% 

0.047 
% 

Tested with 
the data 

measured 

333.1 
V 

90.4 
V 

0.683 
% 

0.186 
% 

Tables illustrate the results of the simulation of 
the training and test data in the final step of the 
neural network training, and even for the step with 
the minimum absolute mean error Err.  

In charts and figures, the curves of the training 
and test data, the outputs given by the neural 
network with seven neurones in a hidden layer and 
the curves of the mean absolute error are illustrated. 

Tab. 2  The simulation of the neural network with 7 
neurones in a hidden layer 

 
Tested with the data measured 

Absolute error Relative error  
Max. Mean Max. Mean 

Minimum 
error 
value 

261.5 
V 

75.5 
V 

0.470 
% 

0.147 
% 

Training step 
with minimum 

error 
26 

steps 
5 

steps 
19 

steps 
6 

steps 

 

3,000 training steps of neural network 
Absolute error Relative error  
Max. Mean Max. Mean 

Tested with 
the training 

data 
1.7  V 0.3  V 0.003 

% 
6e-4 
% 

Tested with 
the data 

measured 

387.6 
V 

103.5 
V 

0.621 
% 

0.200 
% 

 

5 training steps of neural network 
Absolute error Relative error  
Max. Mean Max. Mean 

Tested with 
the training 

data 

139.7 
V 

25.6 
V 

0.274 
% 

0.048 
% 

Tested with 
the data 

measured 

321.1 
V 

75.7 
V 

0.622 
% 

0.148 
% 

 
 
 
3. CONCLUSION 

 
This paper describes the artificial intelligence 

application in the diagnostics of the life of insulating 
material for windings in electric rotary machines. To 
identify the system, we used the neural networks 
with the optimizing Levenberg-Marquardt algorithm 
that in our case represents a modelling tool. The 
identification process of insulating material is shown 
in Fig. 1. During the identification, the neural 
network (with 6 and 7 hidden neurones) was trained 
via the training set, which was formed from 
threeinput quantities Ba, Bv and Uk and one output 
quantity Up. On the basis of the input quantities, the 
neural network generalizes the simulated output 
quantity Ups with a certain error in relation to the 
expected value Up. After training, we carried out the 
simulation by means of the training/test data sets 
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Fig. 5  The normalized test data - inputs in the 
neural network with 7 neurones in a hidden layer 

 
 
 
 

 
Fig. 6  Output Up and simulated output Ups for the 

neural network with 7 neurones - 3,000 steps of 
training 

 
 
 

 

Fig. 7  The absolute error of the simulation of the 
neural network with 7 neurones in a hidden layers - 

3,000 steps of training 
 
 
 
 
 

 
 
Fig. 8  The phenomenon of "over-training" in the 5th 

step of training of the neural network with 7 
neurones in a hidden layer 

 
 
 

 
Fig. 9  Output Up and simulated output Ups for the 

neural network with 7 neurones, i.e. 5 steps of 
training 

 
 
 

 
Fig. 10  The absolute error of simulation in the 

neural network with 7 neurones of a hidden layer, 
i.e. 5 steps of training 
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where the test set was obtained in a real insulating 
system. This data set was unknown for the neural 
network to which it was not trained. Before using 
the neural network, it was necessary to normalize 
both the training and even test data in compliance 
with Fig. 4 due to high differences of the values (in 
orders). The phenomenon of over-training (see Fig. 
8) that is typical for the simulations with "unknown" 
test data was eliminated by a record of the weight 
and bias matrix in each step of training. In our case, 
the phenomenon of over-training occurred during 
the 5th training step. Thus, the simulation was 
performed for each training step. The neural network 
with the minimum absolute mean error of the 
training in view of the expected value up may be 
considered as an optimally configured neural 
network. The results of the simulation of the neural 
networks with 6 and 7 neurones in a hidden layer are 
shown in Tab. 1 and 2. For example, the values of 
absolute and relative errors during the simulations 
with the training and test data in the final step (3,000 
steps) and even in the step with the minimum mean 
absolute error (5 steps) are illustrated in Tab. 2. 
Moreover, the table includes the minimum values of 
the absolute/relative errors during the complete 
training process and the training steps in which the 
values were achieved. The curves of the simulations 
with the training and test data for the neural network 
with 7 hidden neurones are illustrated in figures 2 to 
10. Fig. 2 illustrates the normalized training inputs 
Ba, Bv and Uk; and the training output Up and the 
simulated output Ups are shown in Fig. 3. The 
normalized input test data is shown in Fig. 5. In Fig. 
6, we can see the simulated output Ups and the 
expected output Up in the final training step. The 
curve of the absolute mean errors in this training 
step is illustrated in Fig. 7. The simulated output Ups 
of the 5th training step is shown in Fig. 9, that is the 
step with the minimum mean absolute error and with 
the curve over the complete test set illustrated in 
Fig. 10.  

The application of neural networks in the 
diagnostics of the life of insulating systems is 
possible, and in practical terms fully applicable, 
because during the identification of insulating 
material we have achieved the mean absolute error 
of 75.7V. This is 0.158 percent error in view of the 
expected value Up with its real value ranging in 
tens kV. 
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