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SUMMARY 

The mixed spin–1/2 and spin–1 Ising model in the presence of an anisotropic crystalline field is treated exactly within the 

framework of an extended star–triangle mapping transformation. The exact results for the phase diagrams, magnetization, 

internal energy and specific heat are derived and discussed in detail. The relevant mapping suggests that an isotropic in–

plane crystal field (Dx = Dy) leads to the same effects as the hard–axis crystal field (Dz), whereas the in–plane anisotropy  

(Dx  Dy) is responsible also for the randomization of the magnetic ordering (transverse–field like effect).  
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1. INDRODUCTION 

 

For many years, the two–sublattice mixed spin– 

1/2 and spin–1 Ising models have attracted 

considerable attention, since they are well adopted 

for the investigation of a certain kind of 

ferrimagnetism. In particular, the magnetic 

properties of  the mixed spin–1/2 and spin–1 Ising 

models with a crystal field interaction have been 

explored by a variety of techniques [1], on the 

honeycomb lattice even by some exact methods [2]. 

Among other matters, the strong interest in these 

models arises partly on account of an interesting 

critical behaviour they display and partly on account 

of the possible existence of the compensation 

phenomenon. However, as far as we know, the most 

of the theoretical works have been restricted to the 

investigation of the models with an uniaxial crystal 

field interaction, whereas the role of a spatially 

anisotropic crystalline field has not been extensively 

examined yet. Nevertheless, a number of 

experimental works revealed that the real magnetic 

materials often possess a strong source of the 

anisotropy, such as the a crystalline field, which 

could be because of the lattice distortion spatially 

anisotropic [3]. Therefore, the main purpose of this 

work is to clarify the role of the spatially anisotropic 

crystalline field on the magnetic properties of the 

two–sublattice Ising model.  It should be mentioned 

that the relevant physical effects will be treated 

exactly on the basis of an extended star–triangle 

transformation. This method is based on the 

mapping of the mixed honeycomb lattice to its 

equivalent simple spin–1/2 Ising model on the 

triangular lattice.  

The outline of the present paper is as follows. 

The fundamental framework of the transformation 

method is presented in Section 2. The Section 3 

deals with the most interesting numerical results and 

physical consequences of the mapping 

transformation. Finally, some concluding remarks 

are given in Section 4. 

2. FORMULATION 

 

In this work, we will study the mixed–spin 1/2 

and 1 Ising model on the honeycomb lattice, in 

a presence of the spatially anisotropic crystalline 

field. Let us assume that the sites of the honeycomb 

lattice occupied by the atoms with spin 1/2 

constitute the sublattice A, while the sites that are 

occupied by atoms with spin 1 constitute the 

sublattice B. Taking into account the effect of the 

spatially anisotropic crystalline field on the atoms of 

sublattice B, the total Hamiltonian of the system 

reads   
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where the first summation is carried out over the 

nearest–neighbours only, the summation in other 

terms are taken over the all sites of sublattice B, 

 zyxS i ,,
and z

j  denote the components of 

the spin–1 and spin–1/2 operators, respectively. 

Finally, J represents the nearest–neighbour exchange 

term (considering only the ferrimagnetic case J<0) 

and  zyxD ,,
is the spatially anisotropic 

single–ion interaction effecting the atoms of 

sublattice B. For convenience, we can rewrite the 

total Hamiltonian (1) as a sum of N/2 commuting 

site Hamiltonians kH (N - a total number of atoms) 
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where the each site Hamiltonian kH is associated 

with all the interaction terms involving the kth atom 

of sublattice B       
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Regarding the definition of the site Hamiltonian 

kH and the validity of the standard commutation 

relations 0],[ jk HH  (if jk  ), it is possible to 

write the partition function 
hZ of the honeycomb 

lattice in the following form 
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where TkB1 , a symbol  Tr means the trace 

over the degrees of freedom of atoms of sublattice A 

and the symbol 
kSTr represents the trace over the 

spin states of kth atom of sublattice B. In view of 

further manipulation, it is useful to define new 

variables 
1 and 

2 as follows 
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After a straightforward diagonalization of the site 

Hamiltonian ,kH the expression for the partial trace 

over the spin states of kth atom of sublattice B 

implies the possibility to introduce an extended star–

triangle transformation [4]. Actually, the relevant 

mapping takes, in terms of the new notation (5), the 

following form 
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where the parameters A and R are the unknown star–

triangle transformation parameters. Following the 

standard procedure [4], one can directly obtain the 

transformation parameters A and R 
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In above, we have defined the functions V1 and V2 in 

order to express the transformation parameters A and 

R in more abbreviated and elegant form 
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Now, after substituting the extended star–triangle 

transformation (6) into the expression (4), one can 

simply derive the relationship between the partition 

function hZ  of the model under consideration and 

the partition function 
tZ  of the triangular lattice 

with the exchange integral R 
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Obviously, the above equality represent an essential 

result of our calculation, since from here onward, all 

the other thermodynamic quantities can be obtained 

in the straightforward manner. However, the 

derivation of some other physical quantities 

becomes in practice very complex and tedious. 

Fortunately, we can avoid this problem by exploiting 

the following exact relations that may be derived 

after an elementary algebra from the equality (9)  

 

.
)(expTr

)(exp),,,(Tr

),,,(

,),...,,(),...,,(

3212

3212

11

t
kS

k

z

k

z

k

z

k

z

kS

h

z

k

z

k

z

k

z

k

t

z

l

z

j

z

k
h

z

l

z

j

z

k

H

HSf

Sf

ff

k

k


















                                                                              (10) 

 

In equation (10), 
1f  represents a function depending 

exclusively on the spins of sublattice A, whereas the 

function 
2f  is an arbitrary function depending on 

the kth spin of sublattice B and its three nearest–

neighbouring spins of sublattice A. The symbols 

h
...  and 

t
...  mean the standard ensemble averages 

related to the honeycomb and triangular lattice, 

respectively. Applying one of the standard method 

(e. g. differential operator technique [5]), one can 

easily obtain the sublattice magnetizations  
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where the coefficients 1K  and 2K  are given by  
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In order to complete the calculation of the 

spontaneous magnetization of the mixed–spin 

system on the honeycomb lattice, one must also 

utilise the well–known results for the spontaneous 

magnetization and the triplet correlation function of 

the triangular lattice. Finally, we should mention that 
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the standard thermodynamic approach enables also 

simple calculation of the internal energy and the 

specific heat. For the sake of simplicity, we only 

quote that the calculation of the internal energy 

hU and the specific heat 
hC of the mixed–spin 

system on the honeycomb lattice have been made by 

the use of the standard thermodynamic relations 
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3. NUMERICAL RESULTS AND DISCUSSION  

 

Before discussing the most interesting numerical 

results, let us take a closer look at the transformation 

formulas as given by equation (7) and (8). As it is 

clearly seen, in the fully isotropic case of the crystal 

field )0,( 21  zzyx DDDD , the effect of 

the single–ion anisotropy vanishes, since there is no 

source of the anisotropy. It is also worth mentioning 

that the isotropic in–plane crystal field (i. e.,  

;zyx DDD  0, 21  xD ) enters in the 

transformation formulas the same terms, however, as 

the uniaxial anisotropy 
z

D with the opposite sign. 

Consequently, one may conclude that the isotropic 

in–plane crystal field (
yx DD  ) is nothing but the 

negative uniaxial anisotropy. Finally, another 

interesting case appears if we consider an extremely 

anisotropic in–plane crystal field in the system 

( 2;0,0,0 21

xzyx DDDD  ). In this 

case, the comparison of our results with those of the 

transverse Ising model on the same system [6] 

indicates, that the half of the anisotropy 
x

D  

simulates a transverse–field like effect (the term 2 ) 

and another half acts as a negative uniaxial 

anisotropy (the term 
1 ). Obviously, any other case 

(
zyx DDD  ) will exhibit both contributions, i. e. 

the transverse–field like effect (determined by the 

term 
2 ), as well as the uniaxial single–ion 

anisotropy effect (determined by the difference 

1
zD ).  

Now, the numerical results of several particular  

cases will be discussed. At first, the influence of the 

isotropic in–plane crystalline field (
yx DD  ) will 

be explored in detail. In Fig. 1 we display the phase 

boundaries as a function of the isotropic in–plane 

crystal field for some typical values of the uniaxial 

anisotropies 
z

D . One observes here that the critical 

temperature monotonically decreases with the 

crystal field increasing and it vanishes at the 

boundary value ||5.1|| JDJD zx

B  , above 

which only disordered phase may exist. These 

results are completely consistent with those for the 

transition temperature dependences on the uniaxial 

anisotropy 
z

D , since they are only reversed to the 

positive values of the in–plane crystalline fields 
yx DD  . Moreover, it turns out that such a system 

cannot exhibit the compensation phenomenon. 

Indeed, in order to demonstrate the overall 

dependences of the total magnetization 

2)( BA mmm  , we have depicted in Fig. 2 the 

thermal variations of the total magnetization for 

different in–plane crystal fields. The differences in 

the thermal dependences of the total magnetization 

arising as a result of the fact, that the magnetization 

of sublattice B decreases for sufficiently strong in–

plane crystal fields more rapidly than the 

magnetization of sublattice A. Nevertheless, the 

ground state value of the total magnetization takes 

its maximum value, what means that the system 

remains perfectly ordered in the ground state if the 

anisotropy 
x

D  is less than the boundary value 
x

BD . 

Finally, the specific heat variations with the 

temperature are shown for the same crystal fields in 

Fig. 3. In addition to the standard Onsager–type 
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behaviour (the curves labelled 0.2|| JD x
and  

0.0 in the inset of the Fig. 3), an unexpected 

behaviour in the specific heat can be also found here 

(see the curves labelled 0.1|| JD x
and 1.25).    

In these cases one really finds an anomalous 

maximum in the low–temperature region of the 

specific heat. This effect arises due to the crystal 

field induced thermal reshuffling. Moreover, if the 

crystal field is sufficiently close to the boundary 

value 
x

BD  (see the curve labelled 4.1|| JD x
), 

the dependence exhibits apart from the low–

temperature anomaly another Shottky–type anomaly, 

in the high–temperature tail of the specific heat. The 

both maxima clearly penetrating also into the 

paramagnetic region  (the curve 55.1|| JD x
).  

 Now, we turn our discussion to the solution for 

the extremely strong in–plane anisotropy  

( 0,0,0  zyx DDD ), in order to confirm the 

transverse–field like effect of the crystalline field. 

Firstly, we illustrate in Fig.4 the results for the phase 

boundaries (solid lines) and the compensation 

temperatures (dashed lines). As one can see, the 

critical frontier strongly depends on whether the  

anisotropy 
z

D is positive or negative. Namely, in 

the former case the ground state remains ordered 

regardless of the crystal field strength  
x

D  and 
z

D , 

while in the latter one the transition lines terminate 

at certain values of the crystal field 
x

D above which 

only a disordered phase may occur. It is also easy to 

understand that the transition lines merge for strong 

enough negative anisotropies 
x

D , since in this 

region our system is equivalent to that of large 

positive uniaxial anisotropy 
z

D  inserted into the 

strong transverse field. Furthermore, it is noteworthy 

that the maximum value of the transition 

temperature is shifted towards more negative 

anisotropies 
x

D  with the anisotropy 
z

D  

decreasing. This effect appears because the relevant 

negative single–ion anisotropy 
x

D  term preferably 

compensates the influence of the uniaxial anisotropy 
z

D  and only then the transverse–field like 

contribution of the crystal field 
x

D  (which causes 

the repeatedly decrease of the transition 

temperature) is shown. Another interesting fact to 

observe here is the compensation phenomenon that 

occurs for the positive as well negative crystal fields 
x

D . The compensation curve in the region of the 

negative crystal fields 
x

D  is almost insensitive to 
x

D  and it behaves completely independently of the 

anisotropy strength 
z

D . Contrary to this, the 

compensation behaviour in the region of the positive 

anisotropies 
x

D  is much more complicated, namely, 

the compensation temperature may increase as well 

as decrease with increasing in 
x

D , according to 

anisotropy strength 
z

D . 
To illustrate the overall thermal dependences of 

the magnetization, we have depicted in Fig. 5 the 

total magnetization against the temperature for 

different crystalline fields 
x

D , when 0yD  and 

0zD . As it can be seen, the ground state value of 

the total magnetization does not take always its 

maximum value (0.25), although it is independent of 

the sign of the anisotropy 
x

D . Hence, one may 

conclude that the spontaneous ordering does not 

depend on the sign of the crystal field interaction 
x

D , even if the transition temperatures differs very 

much. Moreover, a more detailed study of the 

sublattice magnetization indicates that the crystal 

field interaction 
x

D  competes with the exchange 

interaction, the competition resulting in the 

randomization of the spontaneous ordering of 

sublattice B (sublattice A is not directly affected by 

the crystal field interaction).  As a consequence of 

this randomization, the various magnetization curves 

can be found here, especially for the sufficiently 

strong positive anisotropies 
x

D . In fact, in addition 

to the usually observed magnetization curves of  the 
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Q–type (for all negative and  weak positive 

anisotropies 
x

D ), the R–type magnetization curves 

( 0.4|| JD x
), N–type ( 0.5|| JD x

) or P–

type ( 0.8|| JD x
) might be also realized. The 

occurrence of all the additional dependences is 

related to the fact, that the magnetization of the 

sublattice B is unsaturated and simultaneously 

thermally more easily disturbed than the 

magnetization of the sublattice A, which is saturated 

and thermally more stable (exhibits the Q–type 

behaviour irrespective of the crystal field strength 
x

D ).    

 

4. CONCLUSION 

 

 In the present article, we have investigated the 

mixed–spin Ising system in a presence of an 

anisotropic crystalline field by making use of an 

exact star–triangle mapping transformation. Our 

analysis has revealed that the behaviour of the 

considered system basically depends on the 

anisotropy terms 1
zD  and 2 .  In fact, on the 

basis of the exact mapping one may conclude that 

the first term plays the role of an effective uniaxial 

anisotropy along the z–axis, whereas the second 

term (which occurs only when in–plane anisotropy 
yx DD   is present) is responsible for the 

transverse–field like effect in the system. These 

results support the previous concept [7] that without 

loss of generality the most general anisotropy may 

be taken as: ,, EDED yx  ,AD z   where E 

stands for the in–plane anisotropy and A being the 

effective uniaxial anisotropy. Altogether, the most of 

the nontrivial results come from the analysis of the 

models with the nonzero in–plane anisotropy 

(
yx DD  ). In this case, the interesting quantum 

effects can be observed in the system. Namely, 

besides the standard phase transition behaviour (the 

system undergoes a second–order phase transition 

into the disordered phase), not perfectly spin 

ordering may be found in the system, even in the 

ground state. This behaviour may be interpreted as 

a competition between exchange interaction which 

tries to align the spins in the same direction and the 

effect of the anisotropy 
2  which has tendency to 

destroy this alignment. Finally, it is worth noticing  

that our results are interesting from the theoretical 

point of view (because of the exactness of the 

applied method), as well as from the experimental 

point of view. Namely, a class of recently 

synthesized compounds Ni(X)2Ni(CN)4 [3] provides 

a clear experimental confirmation of the influence of 

the in–plane anisotropy, since the in–plane 

anisotropy significantly modifies the magnetic 

properties of this class of compounds. We hope, that  

the crystal field induced partial randomization 

theoretically predicted in this work, will be also 

experimentally confirmed in the near future. From 

this point of view, the most promising are the 2D 

systems in that strong Jahn–Teller effect causes the 

lattice distortion and consequently, an anisotropic 

ligand field (of lower symmetry) leads to the strong 

in–plane anisotropy in the crystalline field.  
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