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SUMMARY 

Magnetic properties of the 1D mixed spin–1/2 and spin–S (S >1/2) transverse Ising model in the presence of an external 

longitudinal magnetic field are calculated exactly by the use of the generalised decoration–iteration mapping transformation. 

By assuming that only the spin–S atoms do interact with the transverse field the exact results for the Gibbs free energy, 

longitudinal magnetization, transverse magnetization, entropy and specific heat have been derived and discussed in detail. In 

addition to the standard temperature variations of the transverse magnetization, another two non–trivial thermal 

dependences have been found. The results support the concept that the spin reorientation from the longitudinal towards the 

transverse field direction takes place in the narrow temperature region.   
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1. INDRODUCTION 

 

Extensive theoretical as well as experimental 

work has been done over the years to explore the 

behaviour of the pure regular magnetic chains. In 

particular, an experimental discovery of a large 

variety of bimetallic chains has stimulated the 

renewal interest in studying these systems. As 

a matter of fact, the most of synthesized magnetic 

chains usually consist of two regularly alternating 

magnetic ions with unequal spin magnitudes that 

form two unequal sublattice of the magnetic chain. 

The strong interest in these systems arises as 

a consequence of the fact that the mixed–spin chains 

show many outstanding features, such as the 

magnetization plateau [1], the Kostrelitz–Thouless 

transition [2] or the double  peak  specific heat curve 

[3]. An important class of the mixed–spin chains 

constitute the spin–1/2 and spin–S (S >1/2) magnetic 

chains, like A
II
Cu

II
(pbaOH)(H2O)3.2H2O [4], where 

Cu
II
 is a spin–1/2 magnetic ion and A

II
 denotes one 

of the magnetic ions A = Ni
II
 (S = 1), Co

II
 (S = 3/2), 

Fe
II
 (S = 2) or Mn

II
 (S = 5/2) . 

Recently, the considerable attention has been 

paid also to the investigation of the transverse Ising 

model. The main reason of such a great interest can 

be attributed to the fact that the transverse Ising 

model is very valuable model because of its different 

possible application. In fact, the transverse Ising 

model enables a simple explanation of the quantum 

properties of the hydrogen bonded ferroelectrics [5], 

cooperative Jahn–Teller systems [6], as well as 

strongly anisotropic magnetic materials in the 

transverse field [7]. More details about other 

possible application of the model can be found in an 

excellent reviews of Blinc and Zeks [8] and 

Stinchcombe [9]. Although, the transverse Ising 

model is the simplest quantum model, the complete 

exact solution have been obtained in the one–

dimensional case only [10]. However, as far as we 

know, there has not been exactly examined the 

mutual effect of the longitudinal and transverse 

magnetic field on the magnetic properties of the 

mixed–spin chains, so far. Therefore, the main 

purpose of this work is to develop an accurate 

treatment of the transverse Ising model in the 

longitudinal magnetic field for the mixed spin–1/2 

and spin–S (S >1/2) chains. Using the generalised 

mapping transformation technique we will treat the 

model exactly and within the framework of this 

method, the joint effect of the longitudinal and 

transverse magnetic field will be explored in detail. 

The outline of the present paper is as follows. 

The fundamental framework of the transformation 

method is presented in Section 2. This is followed 

by a presentation of the most interesting numerical 

results in Section 3. Finally, some concluding 

remarks are given in Section 4. 

 

2. FORMULATION 

 

In this article we are concerned with the study of 

the mixed–spin chain composed of regularly 

alternating spins, the spin–1/2 (sublattice A) and 

spin–S (S >1/2, sublattice B) placed in the external 

longitudinal and transverse magnetic field. In 

general, the most difficult problem appearing in the 

quantum statistical models consists in the 

noncommutability of the relevant operators involved 

in the Hamiltonian. To overcome this difficulty, we 

consider only the special case of the system, when 

the transverse field acts just on one kind of atoms, 

namely, those with the spin variable S (sublattice B). 

Under this circumstance, the model is exactly 

solvable and the total Hamiltonian  can be written as 

a sum of commuted bond Hamiltonians kH  

 

,
1





N

k

kHH                                                            (1) 



2  Acta Electrotechnica et Informatica  No. x, Vol. y, 2002 

 

 

where N is a total number of atoms of sublattice B 

and the bond Hamiltonian Hk includes all the terms 

associated with kth spin variable Sk  of sublattice B 
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In above,  k
(α=1,2) denotes the spins of sublattice 

A and J represents the exchange constant between 

nearest–neighbouring atoms. The parameter Ω 

stands for the transverse field interaction of atoms of 

sublattice B and finally, the terms
AH  and 

BH  

describe the influence of an external longitudinal 

field on atoms of sublattice A and sublattice B, 

respectively.  

To step forward with the calculation, one has to 

diagonalise the bond Hamiltonian Hk, what can be 

straightforwardly performed by making  use of the 

well–known rotational transformation [11]. 

Subsequently, after an elementary algebra we can 

write following equation for the partition function Z 

of the model under investigation 
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Here TkB1 , Bk  being Boltzmann constant, T  

the absolute temperature and the symbol 
}{

 means 

a trace over a degree of freedom of sublattice A. The 

relevant expression for the partition function Z of the 

mixed–spin chain indicates the possibility to utilize  

the decoration–iteration transformation, which has 

been originally introduced by Syozi [12] and later 

remarkably generalised by Fisher [13]. This 

transformation takes in our case the form 
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Actually, this transformation provides an exact 

mapping relationship between the mixed–spin chain 

and its corresponding exactly solvable spin–1/2 

Ising chain with an exchange integral R, in an 

external longitudinal field H0. For the unknown 

parameters A, R and H0 that emerging in the 

decoration–iteration transformation one obtains after 

the standard procedure [12] following relations 
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Here, we have defined the expressions V1, V2 and V3  

by this set of equations: 
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The substitution of the transformation (4) into the 

formula (3) for the partition function Z leads 

immediately to the relationship between the partition 

function Z of the mixed–spin chain and the partition 

function Z0 of the standard spin–1/2 Ising chain 

 

).,( 00 HRZAZ N                                            (7) 

 

This equality proves that the mapping relation (4) 

establishes an equivalence between the mixed–spin 

chain in the transverse  field and the simple spin–1/2 

Ising chain, since both partition functions differs 

from each other only by the multiplicative factor 

A given by equation (5). Therefore, the equation (7) 

may be considered as a mathematical expression of 

the aforementioned exact mapping relationship 

between both models. However, the equality (7) is 

also very suitable for deriving  other quantities, such 

as Gibbs free energy, internal energy, magnetization, 

entropy etc. Thus, for instance the Gibbs free energy 

G of the mixed–spin chain is given with respect to 

the equality (7) by  
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At this stage, the magnetization can be easily 

calculated from the Gibbs free energy as a derivative 

with respect to the relevant magnetic fields. After 

straightforward, but a little bit tedious algebra, the 

longitudinal and transverse magnetization can be 

written in this compact form 
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where m
x
 denotes the transverse magnetization of the 

sublattice B (the transverse magnetization of the 

sublattice A is equal to zero), m denotes the total 

longitudinal magnetization, mA and mB stand for the 

longitudinal magnetization of sublattice A and 

sublattice B, respectively. The magnetization m0 is 

the famous Ising result for the spin–1/2 linear chain  
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and the term ε0 is given by 
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Finally, the coefficients K1, K2, K3 and  L1, L2, L3 

appearing in the formulas (9) are given by this set of 

equations: 
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whereby the function F (x) and G (y) are defined by 
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For completeness, we should mention that the 

entropy S and specific heat C of the studied system 

can be also very easily achieved from the Gibbs free 

energy using the basic thermodynamic formulas 
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3. NUMERICAL RESULTS AND DISCUSSION  

 

Before discussing the most interesting numerical 

results it should be emphasized that the mixed–spin 

chains exhibit qualitatively completely identical 

behaviour independently of the spin value of  

sublattice B. Owing to this fact, we restrict our 

analysis only to two particular cases, namely, SB = 1 

and SB = 3/2. Furthermore, we will consider for the 

sake of simplicity the same longitudinal field 

affecting both type of atoms, i. e. HA = HB = H.  

At first, the temperature variations of the 

transverse magnetization will be examined in detail. 

As one can observe from the Fig. 1 and  2, the 

transverse magnetization may not monotonically 

decrease with increasing temperature as could be 

expected. An interesting nontrivial dependence of 

the transverse magnetization, however, arises only 

for the sufficiently small longitudinal fields. 

Moreover, we should note that the character of the 

transverse magnetization curve depends above all on 

the transverse field strength. In fact, as shown in Fig. 

1 the transverse magnetization by the strong 

transverse fields increases from its initial value, 

reaches a local maximum and then tends to zero with 

the increasing temperature. For better understanding 

of this behaviour, we have depicted in Fig. 3 both 

transverse as well as longitudinal magnetization  

thermal dependences. Interestingly, the thermal 
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Fig.1  The transverse magnetization against the 

temperature for the fixed transverse field and 

selected longitudinal fields when 1BS .         
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fluctuation may increase the transverse 

magnetization only in the small temperature region, 

where the longitudinal magnetization falls down 

very rapidly. These observation would suggest that 

the spins are in this small temperature region 

released from the longitudinal field direction and 

tending to align into the transverse field direction. 

Consequently, thermal induced increase of the 

transverse magnetization can be observed only in 

this small temperature region. On the other hand, as 

one can see from Fig. 2, the transverse 

magnetization for the smaller transverse field 

decreases from its initial value to a local minimum, 

then gradually increases in the narrow temperature 

region to reach a  local maximum and finally sharply 

decreases  as the  temperature  is  raised.   The  other 

type of the magnetization curve is related to the fact 

that by the smaller transverse fields the appropriate 

fall in the longitudinal magnetization takes place at 

higher temperatures. Therefore, the transverse 

magnetization initially decreasing and only then 

increasing due to the thermal fluctuation. Obviously, 

the similar thermal induced increase in the 

transverse magnetization can not be found at higher 

longitudinal fields, since the corresponding fall in 

the longitudinal magnetization is smaller and is 

shifted towards the higher temperatures. As 

a consequence of that, thermally caused lowering of 

the transverse magnetization is in this temperature 

region greater than corresponding increase 

associated with the spin release from the 

longitudinal field direction.  

Now, let us turn back to the sublattice 

magnetization dependences on temperature, as 

shown in Fig. 3. Although, the longitudinal 

magnetization of both sublattices behave similarly, 

increasing of the transverse field leads to the 

disordering of the spins of sublattice B from the 

longitudinal field direction. On the other hand, the 

spins of sublattice A that are not directly affected by 

the transverse field, remain at the ground state 

perfectly ordered in the longitudinal field direction, 

regardless of the transverse field value. The previous 

results can be explained in the concept of 

Heisenberg uncertainty principle, namely, the 

longitudinal magnetization of the sublattice B is 

lowered by the transverse field on account of the 

raising transverse magnetization.    

Finally, we will illustrate in Figs. 4 and 5 the 

thermal dependences of the entropy and specific 

heat. As one can see from the Fig. 4, the entropy 

exhibits the standard S–shaped curve independently 

of the transverse and longitudinal field strength. 

Nevertheless, one can ascertain that the curve 

becomes more abrupt and shifted towards the lower 

temperatures as the longitudinal field is lowered. 

Hence, the spin ordering (which occurs due to the 

effect of longitudinal field) clearly manifests itself in 

the broadening of the S–shaped curve. For better 

orientation, the corresponding temperature variations 

of the specific heat are plotted in Fig. 5. From the 

displayed dependences one can realize that the 

specific heat shows the familiar Schottky–type 

behaviour irrespective of the value of the external 

transverse and longitudinal field. It is noteworthy 
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Fig. 3  The total and sublattice longitudinal and 

transverse magnetization for fixed external fields as 

a function of temperature. 
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that the stronger the longitudinal field, the broader 

the Schottky–type anomaly occurring  in the specific 

heat. Therefore, the observed behaviour implies that 

the longitudinal magnetic field is responsible for the 

strengthening of the short–range order. Indeed, the 

short–range order strength which is proportional to 

the maximum of the specific heat is shifted towards 

the higher temperatures with the longitudinal field 

increasing. Interestingly, the field induced double 

peak structure of the specific heat can not be 

observed for any combination of the transverse and 

longitudinal field. Thus, comparing our results with 

those [3] for the Heisenberg mixed–spin chains 

indicates that the doubly peak structure of the 

specific heat arises purely due to the quantum effects 

originating from the Heisenberg exchange 

interaction.  

 

4. CONCLUSION 

 

In the present paper, by making use of an exact 

mapping relationship, the exact treatment for the  

mixed–spin chains in the presence of an external 

longitudinal and transverse field has been 

established. The presented results are interesting 

from the theoretical point of view because of their 

exactness, as well as from the experimental point of 

view in connection with many possible 

technological application of the one–dimensional 

magnetic materials, such as molecular based 

magnetic materials [14]. Perhaps, the most 

interesting result to emerge here is that there is a 

strong evidence for the spin release from the 

longitudinal towards the transverse field direction in 

the Ising–type anisotropic magnetic materials. We 

hope, that the theoretical prediction of the nontrivial 

thermal dependence of the transverse magnetization 

will inspire experimental physicists in order to 

confirm this phenomenon in the magnetism. 

Moreover, it should be emphasized that the applied 

transformation technique enables a simple 

calculation of the complete set of  thermodynamic 

quantities. Altogether, the mapping technique 

provides a  relative simple and simultaneously 

powerful tool for the investigation of the mixed 

quantum–classical systems. Actually, it turns out 

that it can be quite naturally extended to the more 

complicated quantum–classical system, such as the 

two–dimensional models in the transverse field [15] 

(of course, under the requirement of zero 

longitudinal field) or mixed Ising–Heisenberg 

systems [16]. In this way continues our next work.  
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