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SUMMARY 

 

A switched reluctance motor is described by partial differential equations and the corresponding mathematical model is 

relatively complicated. Many methods trying to simplify it were published during last decades. This paper deals with one 

possible scheme convenient for bi-directional motor speed control. Non-linear functions of phase current and torque were 

modelled by means of  look-up tables containing measured values. Mutual position of stator and rotor poles of a motor with 

pole ratio 3:2 repeats after each ninety degrees, therefore rotor angle and non-linear functions are calculated for this 

interval only. Logic unit enables timing of voltage pulses due to the required direction of rotation and braking. Simulation 

scheme was realised by means of the MATLAB programme. Time responses of  rotor angle, speed, phase currents and torque 

were drawn at simulation and they are well matching with those obtained by measurement.  
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1. INTRODUCTION 

 

Though the switched reluctance motor (SRM) was 

designed in 1842 its research and development has 

begun after 1980, when results of P.Lawrenson and 

his team were published 5. Many papers offer 

mathematical models and methods suitable for 

motor control. This article is based on measured 

phase inductance L(i, ) of a motor with pole ratio 

3:2, which is depicted in Fig.1.  

Fig.1. Inductance L(i, ) as function of phase 

current and rotor angle 

 

Phase current and torque are described by following 

equations 
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Consideration of these non-linear equations is the 

main problem at design of a SRM mathematical 

model and control. More approaches have been 

derived to solve this task: 

 SPICE programme enables to determine values 

of inductance corresponding to the constant 

speed in each integration cycle. Electrical loop 

is solved but not the corresponding torque.  

 The real function of   ,i  is substituted by 

more convenient, usually exponential function, 

which enables integration. The following 

substitution is known : 
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    where  ia  are functions expressed by    

Fourier series.  

 Another substitution uses the following  

function: 

     f i
sat e1,i ,  where 
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This function enables simple derivation and 

integration. Control of SRM by this solution 

was successfully verified by simulation . 
 A convenient substitution function may be 

obtained from measured or calculated values by 

a bi-cubic spline interpolation, because it gives 

smooth curves and enables to realise on-line 

control . 

 Very precise solution is reachable by finite 

element method . The input magnitudes are 

stator and rotor dimensions, number of 

windings and saturation curve. Division of 

magnetic part in more thousand elements 

ensures exactness. A powerful computer, 

corresponding programme and higher compu-

ting time are needed. 

 Reference 1 contains a numerical method 

applying look-up table of measured or computed 

values of    ,i . Then the inverse table i(,) 

is arranged and after numerical integration the 
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torque table ),i(M  is obtained. Instantaneous 

values of current i and torque M are calculated 

by interpolation. 
 A special observer may determine motor average 

torque according to the following expression 4: 

 







   d di

,i

2

pN
M

j

0

m ,           (5) 

where Nm and p are the number of phases and 

poles, respectively.The magnetic flux of a phase 

may be determined as  dtRiu  . This 

control method has found application in 

electrical traction. 

 

 
2. SRM  MODEL  

 

The mathematical model of the SRM drive including 

its control is shown in Fig.8. Particular subsystems 

are described below. 

Fig.2. Speed controller 

 

Compensation of the load torque requires an integral 

in the speed controller (Fig.2). Anti wind up scheme 

is added for to avoid the output value overshoot 

caused by the presence of a limiter. 

Fig.3. Model of a pulse converter  

 

Current deviation is connected to the input of a relay 

element, which corresponds to a pulse-modulated 

converter (Fig.3). Its output voltage varies within the 

interval U -U . 

 

Voltage pulse distribution to the corresponding 

phase winding is realised by a logic unit. (Fig.4).  

Because mutual position of stator and rotor poles 

repeats after 90
o
,
 
it is satisfactory to

 
connect each 

phase ones during this interval for approximately 

30
o
. If driving torque is required, then phase winding  

should be fed at raising inductance function. A 

braking torque is produced at negative derivation of 

inductance function. Switching of both control 

modes may be derived from the speed deviation sign 

(input delta). Phase shifting by plus 60
o
 or minus 30

o
 

necessary for the required direction of rotation or 

braking may be realised by changing phase outputs 

of the logic unit (switches B1, B2 and B3). Fast 

decreasing of winding currents is ensured by 

negative voltage outside of voltage pulse. 

Fig.4. Model of the logic unit 

 

Current loop contains non-linear function L(i,). 

The winding model of one phase (Fig.5) is given by 

the following non-linear equation: 
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Because current can reach only positive values the 

lower integral limit is equal zero. The inductance 

functions for particular phases were embedded into 

look-up tables. Current feedback to the converter is 

calculated as sum of all phase currents. 

Fig.5. Model of one phase winding. 

 

Phase torque of each phase as function of current 

and rotor position (angle) may be also expressed by 

means of look-up tables. Since phase currents are 

always positive, torque sign is determined by mutual 

poles position, i.e. by due timing of the logic unit. 

Model of this subsystem is shown in Fig.6, output of 

which yields the sum of phase torques. Load torque 

is considered as passive and constant for both 

rotation directions.  

Fig.6. Model of the torque creating subsystem 
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Fig.8. Simulation scheme of the SRM  

 

Fig.7. Rotor angle calculation 
 

Motor model also contains determination of the 

instantaneous rotor angle from the known angular 

speed (Fig.7). Distribution of converter impulses is 

repeating after each 90
o
 for a motor with pole ratio 

3:2, therefore model is designed for this interval 

only. It should be also distinguished direction of 

rotation because forms of time responses are 

different as can be seen in Fig. 9. 

 

 

3.SIMULATION RESULTS 

 
SRM model was programmed in MATLAB (Fig.8)  

Time responses obtained at simulation are shown in 

Fig.9. Minimal inductance and torque characterise 

zero position, therefore start from this operating 

point should be realised at no-load. Since the first 

part of the speed curve is slow, time responses were 

drawn at 5
o
 of the initial position. According to the 

speed reference SRM is running up in one direction, 

then is reversed and loaded at time 0.43 s. Speed 

controller‘s output is limited to determine the 

highest phase current. Its second output yields 

signum value necessary for switching-over the logic 

unit due to the required direction of rotation and 

braking. Because motor torque is formed from 

pulses the obtained speed response cannot be smooth 

unless the moment of inertia is satisfactorily high. 
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Fig.9.  Simulation results 
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The presented SRM model may be verified by 

comparison of current oscillograms obtained at 

measurement on a real motor with current curves 

drawn at simulation. 

 

Fig.10  Phase current  form at  60 rad/s. 

 

Fig.11  Phase current  form at  233 rad/s. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 Simulated currents at 60 rad/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 Simulated currents at 233 rad/s. 

Detailed forms of currents are shown in Fig.10 and 

Fig.11. They were drawn at different angular speed 

and at 230 V of voltage pulse. Rated power of the 

measured SRM was 4 kW at 3000 rev./min. Further 

parameters were published in [11]. The following 

Fig.12 and Fig.13 contain corresponding time 

responses of all three phases obtained at simulation  

 

 

4. CONCLUSION 

 

The above introduced relatively simple simulation 

scheme enables to illustrate basic properties of 

a SRM. Instead of approximate mathematical 

expressions here was preferred measuring of non-

linear functions and their embedding in D2 look-up 

tables. This model enables study the drive behaviour 

at chosen initial rotor position, setting the load 

torque at given operating point, pulse voltage 

variation as function of speed, easy changing of 

turn-on and turn-off angles and further SRM 

properties. The simulation results are satisfactorily 

matching with measurement.  
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