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SUMMARY 

A set of closed-form expressions is derived for the capacitance per unit length of the most common two-dimensional VLSI 

interconnect structures. The results have been obtained by using an approximate electromagnetic analysis of two coupled 

interconnect conductors over a ground plane (silicon substrate). We assume that the electric field meets the boundary 

conditions of a single isolated infinite line; therefore the boundary conditions for the conductors in the structure are 

approximately satisfied. It is shown by the numerical results that the derived formulas in this paper can provide an easy-to-

use and fast-to-compute solver that results in accurate and reliable capacitance per unit length values. 

 

 

1. INTRODUCTION 

 

In modern analogue and digital IC's, intercon-

nections are the main source of the overall delay. 

Moreover, the proximity of the interconnects can 

induce serious crosstalk issues. In advanced IC 

technologies, where the interconnection pitch is less 

than 2 m ( i.e., the spacing is close to or less than 

1 m), the line-to-line capacitance per unit length is 

comparable to or larger than the line-to-ground 

capacitance per unit length. Nowdays many efforts 

are being devoted to develop numerical, approxi-

mate analytical or in some simple topologies exact 

solutions to deal with the analysis of the three-

dimensional interconnect configurations. There are 

a couple of procedures which can solve this problem 

numerically, for instance, finite difference or finite 

element approaches [1]. To this purpose, techniques 

based on the use of Green’s functions were proposed 

in [2-5]. On the other hand, all numerical or 

seminumerical techniques are computationally 

expensive, so that run times risk to become 

prohibitive for VLSI layouts, even in the two-

dimensional case. The same is true for the exact 

analytical solution, which is very difficult to derive 

and results in an extremely complicated modelling 

of even simple interconnect configurations. 

The high accuracy expressions for capacitance of 

simple topologies, such as the single or double metal 

interconnects above a ground plane has been 

published by Chang [6], who used the conformal 

transformation method. If w  h (w is conductor 

width and h is the line to ground plane distance) 

holds, their accuracy is within 1 % of the exact 

value. In [7], greatly simplified analytical expres-

sions were proposed, where the 2-D structure was 

divided in elementary components like bottom, top 

and side wall contributions. In [8], Yuan and Trick 

derived some simple analytical expressions where 

the rectangular cross-section of the line was replaced 

by the oval one [9, 10]. 

In this work, a new approximate analytical 

formula for capacitance per unit length for VLSI 

interconnects is presented and verified. To calculate 

the capacitance of an interconnect it is assumed that 

the electric field is transverse to the axis of 

propagation. When we assume quasi-TEM mode of 

propagation an electrostatic analysis can be used to 

determine the potential distribution in the structure. 

The Green’s function of the electric type is derived 

using the method of images. The self and mutual 

capacitance per unit length formulas proposed in this 

paper are calculated from the quasi-static charge 

matrix equation; these CAD-oriented closed-form 

expressions are suitable for a large range of line 

aspect ratios. 

 

2. MODELING APPROACH 

 

In order to properly analyze a periodic array of 

interconnect lines which have distributional 

characteristics, the system can be viewed as 

a coupled parallel conductor lines over a single 

perfectly conducting ground plane. In its most 

elemental form this structure consists of only two 

adjacent interconnect lines, as shown in Fig. 1. It 

should be noted that the coupling between two 

adjacent lines with the nearest neighbours is greater 

than the equivalent coupling that would occur in 

a periodic array, since field sharing would be 

expanded to include the other conductors in the 

configuration. Thus, the analysis of only two-

coupled interconnect conductor lines would yield 

a good background for VLSI interconnect design 

purposes. 

 

2.1 Two-dimensional Green’s function for 

homogeneous dielectric medium 

 

We consider first the potential produced by a unit 

line charge located at the source point rs = (xs, ys) in 

a homogeneous dielectric medium with permittivity 



 = 0r. This potential has the nature of a two-

dimensional Greens function G(rs: rf). The corre-

sponding electric field is purely radial and can be 

calculated by an application of Gauss's law. Thus, 
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where rf = (xf, yf) is the field point in the xy plane.  

 

The scalar Green’s function of the problem 

satisfy the Poisson equation 
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and is given as 
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The potential distribution produced by a line 

charge of density Ql is 
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The potential at any point rf with respect to 

a reference point rR = (xR,yR) can be given as 
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where (rR) is the potential of the reference point in 

the structure. 

 

 

Fig. 1  Two rectangular conductors over a single 

ground plane and capacitance definitions 

(cross-section) 

 

Fig. 2  The interconnect lines in a VLSI chip 

 

2.2 Self and mutual capacitance formulas 

 

The analysis of this representation of the coupled 

interconnect structure assumes only one mode of 

propagation (quasi-TEM). As a first step, round 

sectioned lines embedded in an electrically 

homogeneous medium are assumed, which is 

realistic for most microelectronic micrometre 

designs. This was found permissible (see numerical 

results) and simplifies the analysis considerably. The 

real and equivalent structure are shown in Fig.1, 

where the rectangular to circular conversion is used. 

To model actual rectangular conductors, we define 

an equaivalent diameter 2rieq (i = 1,2) as the mean of 

the diameters of the two circles inscribed in the 

conductors (2rieq = (wi + Ti)/2)). The other 

geometrical dimensions h, H and s are consequently 

redefined as Heq = H + (T2 - w2)/4, heq = h + (T1 - 

w1) / 4 + (T2 - w2) / 4, and seq = s + (w1 - T1)/4 + (w2 

- T2)/4. The approach uses the fact that in 

a multiconductor system superposition may be used 

to determine the self and mutual capacitance per unit 

length from the electrostatic charge matrix equation. 

The charge-voltage relationships (capacitance ma-

trix) can be expressed as follows: 
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where Q1 and Q2 are the linear charge per unit length 

of each conductor, V1 and V2 are the potentials of 

each conductor, c11 and c22 are the self-capacitances 

per unit lenght of each conductor, and c12 and c21 are 

the mutual capacitance per unit length between 

conductors. For general configuration in Fig. 1, the 

self and mutual capacitances are  
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Using the equivalent structure shown in Fig. 1, 

where the rectangular to circular conversion can be 

applied, the coefficients cg1, cg2, cm can be deter-

mined using quasi-static field analysis and method 

of images. The final closed-form expressions for the 

ground and mutual capacitances are given by
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For the case of VLSI interconnects on an Si-SiO2 

substrate (Fig. 2) with a dielectric overlay (free 

space), it is convenient to assume that no dielectric 

interface exists and the total propagation medium is 

the homogeneous dielectric with relative effective 

permittivity 

  2/2/1)/121)(1(2/)1(),(  whoxoxhoxeff
. 

 

3. RESULTS 

 

Let us consider a pair of coupled parallel 

interconnection lines embedded in a homogeneous 

medium over a ground plane as shown in Fig. 2. 

The permittivity of the medium (silicon oxide) is ox 

= 3.90. Table I provides a comparison of the line 

capacitances between data obtained by our analytical 

formulas and the data obtained by multilayer Green's 

function method [4] and electromagnetic solver 

(total charge boundary element method)[11], 

respectively. Good agreement between our results 

and the published data can be seen from Table 1. 

From the table we observe that there is a good 

agreement (difference less than 10 %) between our 

results and those obtained by quasi-analytical 

approach [4] or numerical oriented code [11]. 

 

 This paper Green's function [4] Quasi-static [11] 

w/H C11 C12 C11 C12 C11 C12 

0.5 7.580 -2.410 7.270 -2.370 7.270 -2.368 

1.0 9.542 -1.839 9.219 -1.765 9.219 -1.766 

1.25 10.592 -1.621 10.202 -1.584 10.200 -1.584 

1.5 11.638 -1.312 11.149 -1.455 11.150 -1.454 

2.0 13.971 -1.169 13.119 -1.278 13.120 -1.277 

2.5 15.878 -1.214 15.044 -1.177 15.040 -1.176 

 

Tab. 1  Self and mutual capacitance of a pair of coupled parallel interconnect lines with different geometries 

(10pF/m) with: w1 = w2= w, h = H1 = H2 = H, T1 = T2 = T, w/s = 1, w/T = 1 and ox= 3.90.



4. CONCLUSION 

 

In this paper we have derived new expressions 

for the self and mutual capacitances of the most 

common 2-D VLSI interconnects. The capacitance 

elements have been obtained by the method of 

images in conjunction with the equivalent round 

cross-section of interconnect lines. The accuracy of 

the final results is validated with respect to the 

formulas and full-wave solvers already reported in 

literature. 
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