
Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 55

DESIGN OF DISTRIBUTED SYSTEM BASED ON TECHNOLOGY OF MOBILE
AGENTS1

Martin TOMÁŠEK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of

Košice, Letná 9, 042 00 Košice, Slovakia, phone: (+421 55) 602 25 50, fax: (+421 55) 633 01 15,
e-mail: martin.tomasek@tuke.sk

SUMMARY
An information system operating in environment that is highly distributed, heterogeneous, extremely dynamic and

comprising many autonomous nodes must handle several emerging problems. Concept of high-level communication is the
most important problem within the flexible distributed system. Our research on distributed systems in heterogeneous
computational environment tries to combine technologies as software agents and mobile code. The paper presents principles
and an architecture where mobile agents could move across distributed environments, integrate with local resources and
other mobile agents, and communicate with the users. There are also two concepts of inter-agent communication defined:
session-oriented communication scheme and anonymous communication scheme.

Keywords: distributed system, mobile code, agent, agent technology, software agent, mobile agent, agent-oriented
programming, agent-based system.

1 This paper was supported by grant Nr. 1/6278/99 of the Slovak Grant Agency.

1. INTRODUCTION

Computational environment as Internet is highly
distributed, heterogeneous, extremely dynamic, and
comprising a large number of autonomous nodes
[11]. An information system operating in such an
environment must handle several emerging
problems. The most traditional architecture on the
Internet is the client-server model, but it is limited
and restrictive. Some nodes will want to take both
roles (client and server) depending on which node
they are interacting with. There are several forms of
heterogeneity in this environment, e.g. different
platforms, different data formats, the capabilities of
different information services, and the
implementation technologies. The information
system must handle these problems to be able to
work effectively.

Many software technologies have matured to
participate in and contribute to the Internet
environment. The technologies as event simulation,
applied natural language processing, knowledge-
based reasoning, advanced information retrieval,
speech processing, etc. are already prepared for this.
However, there is a lack of tools and techniques for
constructing intelligent clients and servers or for
building agent-based software in general.

Agent technology [4] can address each of the
problems mentioned above. When we describe these
agents as intelligent, we refer to their ability to:
communicate with each other using an expressive
communication language, work together
cooperatively to accomplish complex goals, act on
their own initiative, and use local information and
knowledge to manage resources and handle requests
from other agents. Agents has attracted a lot of

attention in artificial intelligence as well as
distributed systems circles.

Mobile agents [5] may be able to move between
computers in a network while carrying along their
internal state in order to resume work at a new
location. Though first prototype systems and even
products exist, the architecture of mobile agents
systems is not well understood today and hence
needs more investigation.

2. SOFTWARE AGENTS INTERACTION

For the purpose of software agents interaction
they must establish communication relationship
from time to time. We call it session-oriented
communication and agents must make an
appointment, then they can communicate using
message mechanisms.

In the general case, a group of agents performing
a common task may be arbitrarily structured and
highly dynamic. In those environments, one cannot
assume that an agent that wants to synchronize on an
event knows a prior which agent is responsible for
generating this event. Therefor, it is needed to
design the concept of anonymous communication,
allowing agents to generate events and register for
the events they are interested in.

We could address many of the difficulties of
communication between software agents by giving
them a common language. In linguistic terms, this
means that they would share a common syntax,
semantics and communication protocol.

Getting information processes to share a
common syntax is a major problem. There is no
universally accepted language in which to represent
information and queries. We found many languages

56 Design of Distributed System Based on Technology of Mobile Agents

such as KIF [3], extended SQL, LOOM [6] and
XML [13] together with RDF [12] or Topic Maps
[10] which have their supporters, and they will
become or already are standardized and
recommended to represent and to exchange
knowledge. As a result, it is currently necessary to
say that two agents can communicate with each
other if they have a common representation language
or use languages that are inter-translatable.

Assuming a common or translatable language, it
is still necessary for communicating agents to share
a framework of knowledge in order to interpret
message they exchange. This is not really a shared
semantics, but a shared ontology [7]. Shared
ontology is under development in many important
application domains such as planning, scheduling,
data mining, biology and medicine.

KQML [1] is a language that is designed to
support interactions among intelligent software
agents. It was developed by the ARPA supported

Knowledge Sharing Effort [7] and separately
implemented by several research groups. It has been
successfully used to implement a variety of
information systems using different software
architectures. It is concerned primarily with
communication protocols (and secondarily with
semantics). It is a language and a set of protocols
that support computer programs in identifying,
connecting with and exchanging information with
other programs. Current KQML implementations
use standard communication and messaging
protocols as a transport layer, including TCP/IP, e-
mail, HTTP and CORBA. In designing KQML, the
main goal was to build in the primitives necessary to
support all of the agent architectures in use.

3. DESIGN OF DISTRIBUTED SYSTEM
ARCHITECTURE

The architecture of the distributed system (Fig.
1) is in principle multi-agent system and comprises
both static and mobile agents [9]. We do not use the
traditional design of the distributed systems, where
an environment is strictly homogeneous and
implemented by standards as DCOM/COM or
CORBA. Our design follows principles of mobile
code systems [2]. The environment is heterogeneous
and can differ in each place of the distributed
systems. Components of the system are presented as
autonomous processes – software agents. Such a
system then can be easily nested in the
heterogeneous environment as Internet and fulfil the
distributed tasks there (e.g. information retrieval, e-
commerce tasks, etc.).

The next chapters take each type of agent from
the architecture and describe its activities and

purpose within the infrastructure.

3.1 Host Agent

The host agent is a static agent that coordinates
the activities that occur within a place. The host
agent can offer a number of services related to
information resources, users and agents within a
given place.

It provides a migration service to mobile agents
wishing to leave the place. The host agent is
responsible for negotiation passage to the recipient
place and for ensuring that the mobile agent is
transferred successfully. If the migration of a mobile
agent is rejected, then it is the duty of the host agent

Host agent

Resource
agent

User interface
agent

Mobile agent

User interface
agent

Resource
agent

Resource

Resource

Place

Transit to
other

places via
network

User

User

Fig. 1: Architecture of the distributed system based on software agents

Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 57

to restart the agent to allow it to choose a new
destination.

It authenticates and performs a validation check
on mobile agents wishing to enter the place. Agents
that cannot be authenticated or fail the validation
check are rejected.

It launches received mobile agents in a suitable
run-time environment, which will be related to the
amount of trust given to the mobile agent.

It mediates access to information resources at a
place level. When a mobile agent enters a place, the
host agent performs a security check upon it and
allocates the mobile agent a permission. This
permission is used by resource agents to determine
whether to allow access to a resource.

It provides a central registration area where static
and mobile agents can register and advertise their
resources and interests. A place is also a meeting
point which allows agents to gather and share
information to resolve their goals.

It is the initial point of contact within the place.
All messages between static and mobile agents are
initially routed through the host agent, which allows
agents to communicate in asynchronous fashion.

It advertises public information resources and the
presence of mobile agents to ask agents from both
inside and outside of the place. In this way, mobile
agents can interrogate the contents of a particular
place before moving. It also provides a mechanism
for agents to locate each other.

3.2 Resource Agent

The purpose of a resource agent is to mediate
access to a particular information resource for a
mobile agent. The resource agent understands how
to access the resource and also understands the
permission structures associated with the resource.

It is fully conversant with the protocols of the
information resource. The information resource
should be completely accessible by mobile agents,
so that user intervention directly on the resource is
not required.

It provides an ontological description for each of
the services offered by the resource. These services
are the methods by which mobile agents interrogate,
update and manage resource.

It advertises the presence of the information
resource by registering the services available with
the host agent. In this way, mobile agents can be
aware of what information resources are present
within a place before they migrate to a particular
place.

The information resources are systems, which
present an external interface through which they
communicate or can be accessed. This allows
resource agents to be developed for any type of
resource (electronic mail, USENET news, databases,
the WWW and so on).

3.3 Mobile Agent

Mobile agents are the components within the
architecture, which can migrate between places.
Initially, a user launches a mobile agent within a
given place, which is called home place.

Mobile agents determine where to migrate to
next by initially querying the local host agent for a
list of places of which it is aware. The mobile agent
can then use this information to contact each host
agent and determine which one offers a set of
information resources which are compatible with its
own goal set.

Mobile agents are authenticated by an electronic
signature that they carry. This signature may be
encrypted but must certainly be verifiable with the
home place of the mobile agent or a third-party
place.

Mobile agents possess the characteristic of
persistence. They use migration as a mechanism to
achieve longevity. In this way, they are not reliant
on the home place that launched them. This is
particularly useful in mobile computing, where the
user is only connected to the network for short
periods of time.

Mobile agents may communicate not only with
resource agents, but also with other mobile agents to
achieve their goals.

Mobile agents should transit the results of their
findings and actions to their users on the home
place.

3.4 User Interface Agent

The user interface agent is a “personal assistant”
who is collaborating with the user in the mobile
agent architecture. It is essentially an interface agent
that perform some tasks.

It launches mobile agents on behalf of the user
and tracks their progress and location. It provides
mobile agents with communication point through
which they can return the results of their tasks.

It organizes and pre-processes information
returned from mobile agents into a form that is
suitable for the user. This may involve filtering out
replicated information, presenting urgent
information to the user quickly, rendering
information using tools that the user is most familiar
with.

It provides host agents with the authentication
credentials of a user’s mobile agents. It is the task of
the user interface agent to ensure that the requesting
entity is itself and authentic host agent, to make
certain that authentication credentials are not given
to unauthorized systems.

58 Design of Distributed System Based on Technology of Mobile Agents

4. DESIGN OF MOBILE AGENT
COMMUNICATION

Considering interaction of mobile agents within
the architecture, we have to distinguish among
following types of communication [8]:

Mobile agent – static agent interaction. Since the
static agents are the representatives of services in the
agent world, the style of interaction is typically
client-server. Consequently, static agents are
requested by issuing requests, results are reported by
responses.

Mobile agent – mobile agent interaction. This
type of communication significantly differs from the
previous one. The role of the communication
partners is peer-to-peer rather then client-server. The
communication patterns that occur in this type of
interaction might not be limited to request-response
only. The required degree of flexibility is provided
by message passing scheme.

Anonymous mobile agent interaction. There are
situations, where sender does not know the identities
of the agents that are interested in the sent message.
Anonymous type of communication is supported by
group of communication protocols. Senders send out
event message anonymously, and receivers
explicitly register for those events they are
interested.

4.1 Session-Oriented Communication Scheme

A session defines a communication relationship
between a pair of agents. Agents that want to
communicate with each other, must establish a
session before the actual communication can be
started. After session setup, the agents can interact
by message passing. Sessions have the following
characteristics:

Two agents participating in a session are not
required to reside at the same place.

In order to preserve the autonomy of agents, each
session peer must explicitly agree to participate in
the session.

While an agent is involved in a session, it is not
supposed to move to another place, to avoid the need
for message forwarding, etc.

Establishment

To set up session, two functions should be
offered: PassiveSession and ActiveSession. The first
function is used by agents to express, that they are
willing to participate in a session. The second one is
used to issue synchronous setup request. Using this
function, caller is blocked until either the session is
successfully established or a timeout occurs.

Function ActiveSession returns reference to the
newly created session object to the caller. Input
parameters are identifier of the place, where the
desired session peer is expected, identifier of the

peer mobile agent or group of mobile agents, and
timeout interval.

Function PassiveSession does not return
anything. The input parameters are optional and they
are identifier of the place and identifier of the mobile
agent or group of mobile agents. If the parameters
are not specified, the caller expresses its willingness
to establish a session with any mobile agent residing
at any place.

The session is established if two session requests
RA and RB of two mobile agents A and B match.
They match if the first parameter (place identifier) in
RA and RB identifies location of B and A, and if the
second parameter (mobile agent or group identifier)
qualifies B and A.

Fig. 2: Client-server communication

A combination of these two functions allows a
client-server style of communication (Fig. 2). The
agent playing server role issues PassiveSession
when it is ready to receive requests. The agent
playing client role invokes ActiveSession, this causes
the server agent to establish a session with the caller
and assigns a thread for handling this session. The
server agent can handle more sessions in parallel and
they are established purely by client agents.

Fig. 3: Peer-to-peer communication

If both mobile agents invoke ActiveSession
requests this corresponds to rendezvous (Fig. 3).
Both requestors are blocked until the session is

Mobile agent
A

Mobile agent
B

RA: PassiveSession

RB: ActiveSession

TerminateSession

communication

Mobile agent
A

Mobile agent
B

RA: ActiveSession

RB: ActiveSession

TerminateSession

communication

blocked

Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 59

established or timeout occurs. This type of session
establishment is suited for agents that want to use
peer-to-peer communication.

Communication

The most appropriate communication paradigm
for session-oriented interaction is message passing.
The available communication mechanism can be
realized by messaging objects.

Messaging Objects can be conveyed
asynchronously between the participants of a
session. Messages are sent by calling the
SendMessage method. For receiving messages the
ReceiveMessage method is provided. The
ReceiveMessage method blocks until a message is
received or timeout occurs, whatever happens first.

Termination

At any time, a session can be terminated
unilaterally by each of the both session participants,
either explicitly or implicitly. A session is
terminated explicitly by calling TerminateSession
function, and implicitly when a session participant
moves to another place. All resources associated
with the terminated session are released.

4.2 Anonymous Communication Scheme

This scheme is used for cooperation of mobile
agents in a group to perform a user task. For
anonymous communication we model an application
as a sequence of reactions to events that in turn
generate new events. Events may be defined by user,
application or system. An event-based view maps
very closely onto real life, and any programming
primitives that support event-based concepts tend to
be more flexible in modeling a given problem.

Our anonymous communication scheme also
follows the specification of event service defined by
OMG.

Fig. 4: Event handling by Event Manager

Events are objects of a specific type, containing
some information. Events are generated by
“producers” and transferred to the “consumers”.
Mobile agents take both roles: producers and
consumers. Both know which events to produce or
consume, they share common knowledge of used
event types in an interaction group. Event types are
negotiated at startup time and mobile agents are
configured before a migration.

Event Managers (Fig. 4) are objects that could be
defined as active components responsible for
synchronization of an entire application. The
manager monitors input events and generates output
events according defined internal rules and internal
state information.

Rules consist of a condition and an action part.
The condition part is a logical expression composed
of event types and state information of the manager.
If the logical condition becomes true, the action part
is triggered. The action part consists of commands
(send output event, change internal state
information). The internal state information is a set
of variables.

Event manager is well-suited to model
dependencies within mobile agents groups.
Relationships between agents are expressed by the
manager’s internal rules and can be defined in terms
of success. Mobile agents participating in such
groups send success events after they have
accomplished their task.

5. CONCLUSION

Usage of autonomous software agents is also
efficient way to develop large heterogeneous
distributed agent-oriented information systems. The
problem of higher-level communication is very
important to have a flexible distributed system. In
this paper we discussed main problems of the
intelligent communication and knowledge exchange
and e.g. KQML is a language and associated
protocol by which intelligent agents can
communicate to share information and knowledge.

Our work is focused on distributed systems
nested in a big heterogeneous environment as
Internet. We designed architecture of the distributed
system based on the paradigms of agent technology
and mobile code. It is not specific distributed system
and it can handle any distributed tasks within the
environment. To handle mobile agent interactions
we defined two types of communication schemes:
session-oriented interaction and anonymous
interaction.

REFERENCES

[1] Finin, T., Fritzson, R., McKay, D., McEntire,
R.: KQML as an Agent Communication
Language, Proceedings of the Third
International Conference on Information and

Input
events

Output
events

Rules

State

Event
manager

Mobile
agents

60 Design of Distributed System Based on Technology of Mobile Agents

knowledge Management (CIKM ’94), ACM
Press, November 1994.

[2] Fuggetta, A., Picco, G. P., Vigna, G.:
Understanding Code Mobility, Software
Engineering, 24(5), May 1998, pp. 342 – 361.

[3] Genesereth, M., Fikes, R., et al.: Knowledge
Interchange Format, Version 3.0 Reference
Manual, Technical Report, Computer Science
Department, Stanford University, 1992.

[4] Jennings, N. R., Wooldridge, M. J.:
Applications of Intelligent Agents, In:
Jennings, N. R., Wooldridge, M. J. (eds.):
Agent Technology: Foundations, Applications,
and Markets, Springer, Berlin, Heidelberg,
New York, 1998, pp. 3 – 28.

[5] Karnik, N. M., Tripathi, A. R.: System Support
for Mobile Agents, Proceedings of the 3rd
ECOOP Workshop on Mobile Object Systems,
MOS‘97, Jyväskylä, Finland, 1997.

[6] MacGregor, R., Bates, R.: The LOOM
Knowledge Representation Language, technical
Report ISI/RS-87-188, USC/ISI, 1987.

[7] Patil, R., Fikes, R., Patel-Schneider, P.,
McKay, D., Finin, T., Gruber, T., Neches, R.:
The DARPA Knowledge Sharing Effort:
Progress Report, In: Nebel, B., Rich, C.,
Swartout, W. (eds.): Principle of Knowledge
Representation and Reasoning: Proceedings of
the Third International Conference (KR’92),
San Mateo, USA, November 1992.

[8] Tomášek, M.: Concepts for Mobile Agents
Interaction, In: Proceedings of Scientific
Conference with International Participation
Computer Engeneering and Informatics
(CEI’99), Herľany, Slovakia, 14 – 15 October
1999, pp. 259 – 264.

[9] Tomášek, M.: Designing mobile agent
architecture, In: Proceedings of the EMES’99

International Conference, (Z. Maghiar Ed.),
Oradea, Romania, 27 – 30 May 1999, pp. 194 –
200.

[10] Topicmaps.net, http://www.topicmaps.net
[11] Vokorokos, L., Kubiš, Ľ.: Information systems

for administration of scientific-research
projects resolved at academic glebe. AT&P
Journal, 12/2000, HMH, pp. 58-59, 71. ISSN
1335-2237, Slovakia.

[12] W3C Semantic Web Activity: Resource
Description Framework (RDF),
http://www.w3.org/RDF

[13] XML.ORG – The XML Industry Portal,
http://www.xml.org

BIOGRAPHY

Martin Tomášek was born 1975 in Košice,
Slovakia. He received the master degree in computer
science in 1998 at the Faculty of Electrical
Engineering and Informatics of the Technical
University of Košice, Slovakia. He is presently a
PhD student at the Department of Computers and
Informatics of the Faculty of Electrical Engineering
and Informatics of the Technical University of
Košice, Slovakia and his study field is software and
information systems. The subject of his PhD
dissertation focuses on distributed systems based on
agent technology and mobile code. He authored
several publications on mobile agents and he
participates in research and educational projects of
the university. His research interests include mobile
code, software agents, distributive programming and
design of information systems.

