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SUMMARY
This paper focuses the use of permutation theory in image processing, namely we present new results related to optimised

permutation filters. Thus, to form an estimate in the environment corrupted by impulse noise, an optimised set of rank rules
provides the best tool for outliers rejection.

Nonlinear filters based on permutation theory, called permutation filters, incorporate to a filter design both temporal-
order and rank-order information included in a permutation group. Unlike a majority of rank-order based filters, where only
rank-order information of an ordered input set is considered, by using the full potential of the permutation group
transformation, an estimate accuracy given by optimised permutation filters is extremely high. In general, an optimisation
algorithm does not exclude the use both mean absolute error and mean square error criteria. However, in the case of the
mean absolute error criteria, the optimised permutation filter should provide the signal-details preservation rather than the
noise attenuation and contrariwise the achieving of the optimised permutation filter under minimisation the mean square
error criteria is characterised by the noise suppression rather than the preservation of image features.

Based on above discussion, the novelty of this paper lies at the analysis the optimisation parameters such as “forgetting
factor” and optimisation criteria. We will show that in the case of small window sizes (e.g. a window size equal to five), there
is necessary to achieve the best balance between the noise suppression and the signal-details preservation. Thus, we provide
an optimisation criteria compromise. Next, the influence of used optimisation criteria is decreased with an increased window
size, since a permutation group size is larger considerably than an input sequence. For this “static” case, we provide the
dependence of estimation accuracy on the “forgetting” parameter. All above conclusions are supported by a number of
figures and tables.
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1. INDRODUCTION

The employment of nonlinear filters [1,2,5,9,11]
can markedly improve the estimation efficiency in
a wide range of smoothing applications, where the
environment is modelled as nonlinear or when the
 noise corruption is nonGaussian. The typical
example of the situation related to both nonlinear
environment and nonGaussian noisy process,
simultaneously, is represented by useful image
information corrupted by the impulse noise or
outliers. When something is nonlinear, it means that
the superposition property cannot be applied and
thus, the use of nonlinear filters on uncorrupted
signal (useful information) and the noise, each
separately, is impossible.

To suppress the impulse noise, usually the robust
order-statistics theory [6,8,13] is used. The
nonlinearity of order-statistic filters [3,5,7,12] is
caused by an ordering of input set. A class of order-
statistic filters avoids the failures of linear filters that
tend to introduce a blurring of signal-details. In
addition, linear filters produce new samples in a
resulting image. In the case of order-statistic filters,
a filter output is a sample from the input set.

The performance of chosen filtering method
depends especially on the measure of the accuracy
of the solution. Of course, there is necessary to

achieve a compromise between the noise
suppression and the signal-details preservation.
Since filter nonlinearity, the optimal filtering
situation, when only affected samples are processed,
cannot be fully obtained. For that reason, the
searching of efficient estimation algorithms is still
actual. One way how to come near to the optimal
situation with simultaneous use the robust order-
statistics theory lies at the consideration both rank-
order and temporal order information contained in
the input set. A class of order-statistic permutation
filters [2,3], utilises the full potential of the
permutation group and thus, it gives the assumption
for successful use in smoothing applications.

This paper focuses the analysis of optimisation
parameters in the acquisition process of optimised
permutation filters [1]. Following analysis provide
simplification for additional use of optimal set of
rank rules and the future implementation of
permutation filters, too.

2. PERMUTATION FILTERS

Unlike some order-statistic filters, namely rank-
order filters, a class of permutation filters utilises
both rank order and temporal order information
included in the input set x . Rank-order filters
[8,11,13] are based on the relationship between input
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vector x  and its rank-ordered version rx  and thus,
these filters ignore temporal information contained
in x . The temporal information lies at changes of
sample positions in x . By this way, there is possible
to generate !N  different permutations of x ,
however, all permutations result to the same rank-
ordered vector rx . For that reason, the output of
permutation filters is a function of the permutation
that maps x  to rx  [2,3,4].

Let n  be a time position of input sequence and
( ) [ ( ),..., ( ),..., ( )]n x n K x n x n K= − +x (1)

       1 2[ ( ), ( ),..., ( )]Nx n x n x n= (2)
an input set in this time position. Note that the input
set ( ) Nn R∈x  is determined by a symmetrical
window shape with a size 2 1N K= + . The time
position of the window shape is given by central
sample ( 1) / 2( ) ( )Nx n x n+= . The ordering of the input
set ( )nx  means that samples 1 2( ), ( ),..., ( )Nx n x n x n  are
mapped to the rank-ordered vector [13]

(1) (2) ( )( ) [ ( ), ( ),..., ( )]r
Nn x n x n x n=x (3)

where (1) (2) ( )( ), ( ),..., ( )Nx n x n x n  defined by

(1) (2) ( )( ) ( ) ... ( )Nx n x n x n≤ ≤ ≤ (4)
represent order-statistics.

For better understanding of permutation filtering
operation, we consider following simplicity. Let

1 2[ , ,..., ]Nx x x=x  be input set or temporal-ordered
vector and (1) (2) ( )[ , ,..., ]r

Nx x x=x  rank-ordered vector.
Then the observation permutation px  is defined as
the permutation that maps x  to rx . Above operation
can be expressed as [2,4]

1 1 11 2[ , ,..., ]p p Npp x x x− − −=
x x xxx (5)

      (1) (2) ( )[ , ,..., ]Nx x x= (6)
      r= x (7)
where the mapping from the temporal-ordered
indices to rank-ordered indices determines the
output rank decision lx . It is clear that the set of
temporal-ordered indices [1,2,..., ]N NΩ = of the input
set x  is mapped to the same set NΩ  which is
characterised by the change of element position,
only, caused by the sample ordering in rx . Note that
all permutations of NΩ  form the group of
permutations [2,3,10].

Since the output of permutation filters is always
the order-statistic from (1) (2) ( ){ , ,..., }Nx x x , then it is
possible to separate the group of permutations to N
subsets iH , for 1,2,...,i N= , called blocks of
partition. It is clear that each iH  is associated with
the order-statistic ( )ix . Since 1 2, ,..., NH H H  have to be
pairwise disjoint and their union is the group of
permutations, the set 1 2{ , ,..., }NH H H=H  is simply
called partition on the group of permutations. In the
case of sample equivalence, some blocks iH  can be
empty subsets. The set of all partitions is described
as ΩH .

The output of permutation filter is defined by
( )( ; )P lF x=

x
x H (8)

where x  is input set and ∈Ω HH  is a partition.
Block associated with the lx th order-statistic
contains the observation permutation.

To come near to the optimal filtering situation,
there is necessary to achieve the optimal set of !N
(for each possible permutation) output rank rules lx .

3. OPTIMISATION

The aim of the optimisation is to set the decision
vector 1 2 !( , ,..., )Nl l l l= , where

ii lp ∈ H  for 1,2,..., !i N= (9)
The optimal filter can be obtained by optimising
each of the elements il  in vector l  independently.

Let { }o  be original and { }x  noisy training
sequence, both of Q  elements. In general, the sum
of Lγ  normed errors to be minimised can be
expressed as [2,3]

( )

1
| ( ) ( ; ) |

Q
Q n

P
n

o n F γλ −

=

−∑ x H (10)

where (0,1]λ ∈  is “forgetting” factor, and ( ; )PF x H
is the output of permutation filter. If 1γ = , then the
optimised filter will be characterised by preserving
characteristics, while 2γ =  determines that the
permutation filter provides the noise attenuation
characteristics. However, as will be shown in the
next section, the influence of used metrics γ  to
a filter behaviour decreases with an increasing
window size.

To provide better understanding of above
optimisation, we simplify above optimisation in
dependence on time .n  Let 1 2( ) [ ( ), ( ),..., ( )]Nn P n P n P n=P
be a vector of Lγ  normed errors at time n , where
each [3,4]

( )( ) | ( ) ( ) |i iP n o n x n γ= −  for 1,2,...,i N= (11)
characterises the error between the desired and the
i th order statistic. Note that ( )ix  is one of N
possible outputs.

Mark ,1 ,2 ,( ) [ ( ), ( ),..., ( )]i i i i Nn R n R n R n=R  as a vector
containing estimation (cumulative) errors so that i
characterises observation with permutation index.
The accordance between j  and permutation index i
determines the update of each ( )j nR , for

1,2,..., !j N= , with the consideration ( )nP , i.e. vector
of Lγ  normed errors. Mathematically, above
operation can be described by

( 1) ( ) if  
( )

( 1) otherwise
j

j
j

n n i j
n

n
λ
λ

− + ==  −

R P
R

R
(12)

The optimal il  term is found by simply searching
( )i nR  for the minimum cumulative error, i.e.

il k=  for , ,1 ,2 ,( ) min{ ( ), ( ),..., ( )}i k i i i NR n R n R n R n= (13)
The initialisation includes following operations

such as the set-up (0) 0i =R  and ( 1) / 2il N= + , both
for 1,2,..., !i N= . Note that sequence position starts
with 1n = . Although initial setting of each il  is
arbitrary from the set {1,2,..., }N , there can occur
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Fig. 1  Achieved results
(a) original image Lena   (b) original image Bridge   (c) 10% random-valued noise

(d) 10% random-valued impulse noise   (e) median with +3 window shape (+3)   (f) median (+3)

situations, where some il  is never updated. For that
reason, it is appropriate to set each il  to the robust
output rank, namely median rank ( 1) / 2N + .

The optimisation consists of the repeating steps
(9), (11), (12) and (13) and it is finished at the end of
training sequences, i.e. for n Q= , or when filter is
sufficiently trained.

4. SIMULATION RESULTS

As the test images, two gray-scale images of
different statistical properties were used (Fig.1a,b).
Each image has a resolution of 256 256×  pixels with
8-bits/pixel gray-scale quantization. The complexity
of an image is evaluated with regards to the problem
areas such as image details and edges.

The first image, well-known Lena (Fig.1a),
includes a number of details and large monotonous
field, too. From the filtering aspect, the problem
areas are represented by women hair and eyes.
Image Bridge (Fig.1b) is more complex, there are
many edges. Small objects such as vegetation, trees
and bush will represent places, where the filter
behaviour can be very problematic.

To illustrate the degree of damage, we use the
model of random-valued impulse noise. This noise
type (Fig.1c,d) replaces some of the image pixels by
gray pixels, in the case of 8 bit-quantized image by
the value from 0 to 255. The mathematical formula
for variable valued impulse noise is given by [8]

with probability  
( )

( ) with probability  1-
p

x n
o n p

υ

υ

υ
= 


(14)

where ( )x n  is noisy image signal, ( )o n  describes
original image signal, both in the time position n
and υ  represent an random value, i.e. impulse, with
the occurrence probability pυ .

The difference from original was evaluated by
two criteria, namely the mean absolute error (MAE)
and mean square error (MSE). The first criteria
evaluates the signal-details preservation well,
whereas the second one is a mirror of the noise
suppression. Two-dimensional definitions of MAE
and MSE are expressed as [8]

, ,
1 1

1 A B

i j i j
i j

MAE o x
AB = =

= −∑∑ (15)

( )2

, ,
1 1

1 A B

i j i j
i j

MSE o x
AB = =

= −∑∑ (16)

where A , B  represent image dimensions and i , j
determine time position, i.e. n iB j= + .

Now, we present some simulation results. At
first, we observed the filter behaviour in dependence
on Lγ  normed error (Fig.3). In the case of +3
window shape (it is cross window of five samples),
the best balance between the noise suppression and
the signal-details preservation was achieved for

1.5γ = . For square window 3x3, i.e. nine samples,
the filter behaviour is relatively constant. It means,
that in this case the used norm can obtain the
arbitrary value.

(a)    (c)           (e)

(b)    (d)           (f)
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Fig. 2  Achieved results
(a) permutation filter (+3, 1λ = , 1γ = )   (b) permutation filter (+3, 1λ = , 1γ = )   (c) median (3x3)

(d) median (3x3)   (e) permutation filter (3x3, 1λ = , 1γ = )   (f) permutation filter (3x3, 1λ = , 1γ = )

Optimisation Optimised on Lena Optimised on Bridge
Image Lena Bridge Lena Bridge

Method MAE MSE MAE MSE MAE MSE MAE MSE
Identity 7.018 759.1 7.221 807.6 7.018 759.1 7.221 807.6

Median (+3) 4.109   82.0 5.935 123.7 4.109   82.0 5.935 123.7
Median (3x3) 4.888   94.3 8.042 173.7 4.888   94.3 8.042 173.7

Permutation filter (+3) 2.262 102.1 3.582 138.9 2.784 121.2 3.395 144.6
Permutation filter (3x3) 0.301     3.0 7.595 232.2 4.795 164.8 0.479     6.1

Table 1  Performance of proposed methods (permutation filter: 1λ = , 1γ = )

To obtain the objective comparison of the filter
performance (Fig.2a,b and Fig.2e,f), achieved results
were compared with a median filter (Fig.1e,f and
Fig.2c,d), i.e. with the initial set of output rank rules.

The optimised permutation filter (Table 1)
smoothes (Fig.2e) the noise excellent and preserves
signal-details, simultaneously. However, the
optimised permutation filter provides above
excellent behaviour for the training sequence, only.
Sequences with different statistical properties
(Fig.2f) are processed insufficiently. It means that
optimised set of output rank rules is not robust.

When our attention is focused on the influence of
parameter λ  (Fig.4), the best filter behaviour is
observed for the maximal possible value, i.e. 1λ = .
Exponential character of λ  exercises especially at
the beginning of the training sequence, since 1λ <
involved by a high number results to close zero.

5. CONCLUSION

In this paper, new results and parametric analysis
of the optimisation for permutation filters were
presented. Simulation results showed us that for
a window size 9N = , the choice of minimisation
criteria (MAE, MSE) is not important. In the case of
“forgetting” factor λ , the best results were achieved
for  1λ = . The only problem is to optimise the set of
output ranks so that the future research should be
oriented to the searching for faster optimisation.

Considering worse results not achieved on
training sequences, the additional research task is
related to robustness improving of optimised
permutation filters so that these filters should
represent the most efficient filtering algorithm for
nonGaussian noisy processes. For that reason, the
key role will be played by simplification of the filter
implementation.

(a)    (c)           (e)

(b)    (d)           (f)
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Fig. 3  Dependence of normalised error criteria
(MAE, MSE) on parameter γ

Fig. 4  Dependence of normalised error criteria
(MAE, MSE) on parameter λ
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