
Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 23

MULTI FDT INTERFACING

Štefan HUDÁK, Slavomír ŠIMOŇÁK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University

of Košice, Letná 9, 042 00 Košice, tel. 055/633 5313, E-mail: hudak@tuke.sk, simonak@tuke.sk

SUMMARY
A widely recognized and accepted assertion in computer science community states that there will not exist a single formal

description technique (FDT) for all aspects of the systems to be expressible. The paper tackle upon the issue of interfacing
different FDTs for design and analysis phases of the discrete systems. Direct vs. indirect interfacing is treated. There is
a number of reasons why a formal specification is useful, and it grows more important, as the designated system becomes
larger and more complex. Very often that requirements are rather intuitive and imprecise, and are expressed in terms of
problem domain they came from. Formal specification (of a system) is a formal expression of requirements on the system
designed and thus lays between the requirements and destination code of the system. The advantage of formal description
techniques (FDTs) usage is also the ability of validation of requirements understanding and detection of errors at early
stages of system development [5]. For large and complex systems, testing cannot prove the right functionality of the system,
because it is incomplete and thus does not check the behavior of the system in all reachable states.

Keywords: Formal Description Techniques (FDTs), Petri Nets, Process Algebra, B-AMN, Interfacing.

1. INDRODUCTION

The need of using FDT for discrete system
design increases with complexity of designed system
[10]. In the last decade, a great deal of work has
been done on developing new FDTs and extending
existing ones to suit better needs of a system
designer. A number of tools which support design
and analysis of systems using FDT have appeared
and there are still further tools under development.

It should be pointed out that there is no general
agreement on whether FDT should be used in design
and analysis partially due to existing myths on FDTs
and partially due to some requirements on formal
thinking the FDTs pose onto users. Another
arguments used by the opposition against FDT is
that FDTs are suitable to cope only with toy
examples and that they will fail in applying to
systems of realistic size. The latter has been
considered to be the main drawback of FDTs. On the
other hand by using appropriate FDT, it is possible
to detect some inaccuracies and to discover
contradictions in specification of system in early
phases of design yet in a systematic way. The choice
of an appropriate FDT depends on properties of the
designed system.

Different FDTs cover different sets of system
properties and thus they express different views of
the system. There is a strong belief among FDT
experts that there will not exist any unique FDT to
cover all desired aspects of designed system.
The consequence of the latter is using a combination
of FDTs that cover in a complementary way system
properties. As an example can serve LOTOS and
ESTELLE [4].

The process of creating a system formal
description in a given FDT is usually time
consuming. On the other hand, some property

(aspect) of the system can be more readily expressed
in one FDT and it will require much more effort to
get the same property expressed in another FDT.
This is the reason why this work investigates
possibilities of obtaining system description in
different FDTs and to create ways how to go from
one FDT to another. Thus, we deal with (multi)FDT
interfacing. Namely we deal with a collection of
three FDTs: Petri Nets, Process Algebra and B-
AMN.

2. PETRI NETS

Petri Nets are used to describe processes as
concurrent and interacting machines with actions
and communications with their environment or user.
Petri Nets are formal and graphical language, which
is suitable for modeling systems with such properties
like synchronisation, parallel operations, conflicts,
or resource sharing.

Ordinary Pertri Net is defined as a 4-tuple N=(P,
T, pre, post), where:

P – is a finite set of places, T – a finite set of
transitions,
pre: P × T → {0,1}is a preset function,
post: P × T → {0,1}is a postset function.

Next, it is possible to define sets:
•t = {p|pre(p,t) ≠ 0} is the set of pre-conditions of t
t• = {p|post(p,t) ≠ 0} is the set of post-conditions of t
p•= {t|pre(p,t) ≠ 0} is the set of post-transitions of p
•p = {t|post(p,t) ≠ 0} is the set f pre-transitions of p

Very common, Petri Nets are to represent by
oriented bipartite graphs with two types of vertices –
places and transitions. For Petri Net depicted in Fig1
we have:

24 Multi FDT Interfacing

Fig.1 Example of Petri net

P={p1, p2, p3, p4, p5}, T={t1, t2, t3, t4}, and pre
and post functions are given in Tab1:

Tab.1 pre() and post() functions

Marking of Petri Net N={P, T, pre, post} is
defined to be a function m:P→IN. We say that the
condition represented by the place p holds, iff m(p)
≠ 0. Transition t∈ T is enabled in a net with marking
m∈ IN |P|, if the following condition is satisfied: p∈ •t :
m(p) ≥ pre(p,t), where |P| stands for cardinality of P.
If the transition is enabled, it can fire. The result of
executing a transition t is a new marking m’∈ IN |P|

and m’(p)=m(p)-pre(p,t)+post(p,t).
Expressing power of Petri Nets for complex

system description was proven in many cases, but
there was stated it has some limitations [3]. For that
purpose the original definition of Petri Nets was
modified in many ways – Generalized Petri Nets
(GPN), Capacity Bounded Petri Nets (CBPN),
Predicate Transition Nets (PrTN), Environmental
Relationship Nets (ER Nets) or Time ER Nets (TER
Nets) [9,4,3].

3. PROCESS ALGEBRAS

Process terms are used as an abstract concurrent
programming language and their algebraic structure
emphasizes composionality [6]. By Process algebra
we mean a formal system for the study of concurrent
communicating processes in an algebraic
framework. R.Milner, with his Calculus of
Communicating Systems (CCS), is considered to be
the initiator of the field of process algebra. Another
very important contribution to the field of the theory
of concurency is CSP by C.A.R.Hoare. J.Baeten is
the founder of the PA in their contemporary setting.

BPA
x+y=y+x

(x+y)+z=x+(y+z)
x+x=x

(x+y)z=xz+yz
(xy)z=x(yz)

δ+x=x
δ·x=δ
PA

x||y=x y+yx
ax =ax

ax y=a(x||y)
(x+y) z=x z+y z

ACP
x||y=x y+yx + x|y

ax|b = (a|b)x
A|bx = (a|b)x

ax|by = (a|b) (x||y)
(x+y)|z = x|z + y|z
a|(y+z) = x|y + x|z

Tab. 2 Axioms of ACP

The simplest process algebra is BPA (Basic
Process Algebra), whose elements are BPA-
expressions, which are built from atomic actions (a,
b, c ...) and basic constructors (+, ·), by the axioms
(Tab 2). We consider idealization that atomic actions
are events without positive duration in time and
constructors (+, ·) are alternative and sequential
composition respectively. The axiom system of BPA
together with the axioms for δ is called BPAδ. The
process δ denotes ’deadlock’. PA (Process Algebra)
includes, in addition to axioms of BPA, also axioms
for parallel composition. If x, y are processes, their
’parallel composition’ x||y is the process that first
chooses whether to do a step in x or y, and continues
as the parallel composition of the remainders of x,y.
The steps of x,y are interleaved, using an auxiliary
operator (left merge). Parallel composition, as
introduced in PA, by the operator ||, does not involve
communication in the process x||y. Some actions in
one process may need an action in another process
for an actual execution. ACP (Algebra of
Communicating Processes) offers merge with
communication which uses the same notation as
free merge (||), because free merge is an instance of
merge with communication (by choosing the
communication function trivial a|b = δ) [1].

4. B AMN LANGUAGE

The B AMN (Abstract Machine Notation) was
developed by J.R.Abrial in half of 80-ties in
cooperation with research group of British
Petroleum International [5]. Currently we can see
increasing interest of B AMN using in both, the
industry and universities. The method is considered
to be a formal method with ability to express needs

P T Pre(P,T) P T post(P,T)
p1 t1 1 p1 t2 1
p2 t2 1 p2 t1 1
p5 t2 1 p3 t1 1
p3 t3 1 p4 t1 1
p4 t4 1 p4 t3 1

p5 t4 1

Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 25

of system in exact style. The B is more than just
formal description. It allows to verify properties and
internal consistency of system specification. B AMN
supports specification, and all the refinement and
design steps subsequent to specification. B is termed
a wide-spectrum language or method, because it
includes both executable descriptions and highly
abstract mathematical descriptions. The means by
which B AMN specifies state transitions are
generalised substitutions. A generalised substitution
is an abstract mathematical programming construct,
corresponding to assignments to state variables, via
the following operators (Tab 3):

Skip
S1 S2
P|S
P==>S

@v.S
S1;S2
S1||S2
WHILE E DO S
INVARIANT I
VARIANT e END

No operation
do S1 or S2
if P behave as S
only if P holds, then
do S
do S for some v
do S1 then S2
do S1 and S2
do S, while E holds

Tab. 3 B AMN operators

In Tab.3 S, S1, S2 stands for generalised
substitutions, e expression I, E and P predicates, and
v a variable or list of variables. Only a subset of
these constructs can be used at the various
development stages [5]. The semantics of
generalised substitutions is given by means of
predicate transformers by E.W.Dijkstra [2]. The
latter describe how the substitution transforms pre-
states into post-states. The concept of abstract
machine is close to object class or to ADA package.
It encapsulates a set of mathematical items,
constants, sets, variables and also operations on

MACHINE N(p)
CONSTRAINTS C
SETS St
CONSTANTS k
PROPERTIES B
VARIABLES v
DEFINITIONS D
INVARIANT I
ASSERTIONS A
INITIALISATION T
OPERATIONS
y← op(x) = PRE P

THEN S
… END
END

Tab. 4 Machine specification

these variables into a named module. The variables
of a machine can be modified by the operations of
that machine only. A general specification-level
machine has a form given by Tab 4.

There are some additional clauses which may be
added to a machine definition for the purpose that
this machine uses various features of other
machines. B AMN provides following mechanisms
as optional clauses in machines, refinements or
implementations: SEES, USES, INCLUDES,
EXTENDS, REFINES, IMPORTS.

5. FDT INTERFACING

It was stated in the introduction to this paper that
different FDTs provide different views of systems.

5.1 System representations

Representing a system in one of mentioned FDTs
brings some advantages and also disadvantages. For
example by representing a system by Petri Net, we
can easily get invariants of the system or its
graphical representation, which helps us to
understand its behavior. On the other hand, the
problem of decomposition of such system
representation is not trivial [4]. Also missing is
a way of abstraction from internal actions, which
means processes are not treated as ‚black boxes‘ in
which only communication behavior is important.

Process terms, due to their algebraic structure,
emphasize composionality, that is, how more
complex terms are composed from simpler ones.
The expression power of process terms is stronger
then power of Petri Nets languages. Thus Petri Nets
can describe a subclass of the all terms only. It is
impossible to find a semantics which represents
every process term by a finite ordinary Petri Net.
This is because process terms are Turing powerful,
whereas finite nets are not [6].

B AMN provides refinement of specification and
also composition of single abstract machines is
possible in B AMN, but the machine designer must
define invariants of the system.

Representation of closed CCS terms by Petri
Nets is used in [7] for fast deadlock detection in
CCS systems. For such representation, the following
assumptions must hold:
A1: Choices are guarded by input actions.
A2: Each pair of action – co-action names occurs
only in two processes.
A3: Each component of the composition is a cyclic
process.
Equivalence between handshakes of a closed CCS
systems and firing of visible transitions of
corresponding Petri Net makes it possible to analyze
system for deadlocks by construction of reachability
tree.

26 Multi FDT Interfacing

P1 N1 M1
µX.a.X WHILE true DO a END

P2 N2 M2
A || b A || b

P3 N3 M3
a+b CHOICE a OR b

P4 N4 M4
a.b a;b

Tab. 5 Elementary constructs

Process term:

C2=ZERO
ZERO=up.ONE
ONE=up.dn.ONE+dn.ZERO

or

C2=µX.up. µY(up.dn.Y + dn.X)

Petri Net: B-AMN:

MACHINE CNT2
CONSTANTS MAX, MIN
PROPERTIES MAX:=2 & MIN:=0
VARIABLES VAL
INVARIANT VAL: NAT & VAL: 0..2
INITIALISATION VAL:=0
OPERATIONS up =

PRE VAL < MAX
THEN VAL:= VAL+1
END;
dn =
PRE VAL > MIN
THEN VAL:= VAL-1
END

END

Tab. 6 An example

Acta Electrotechnica et Informatica No. 1, Vol. 1, 2001 27

5.2 Direct and indirect interfacing

Methods of interfacing can be split down into
two main classes: direct and indirect interfacing.
The first class contains methods, where system
description in one FDT is transferred into another
FDT directly. That, in ideal case, yields a situation
as described in Fig 2a, where two-way conversions
among all the three mentioned formalisms are
described.

Fig. 2a Direct interfacing

In the second class, there are methods which use
services of the other FDT to make the conversion
possible. Example of this transformation method is
on Fig 2b.

Fig. 2b Indirect interfacing

5.3 Interfacing semantics

Tab. 5 contains semantics of the elementary
constructs.

6. EXAMPLE

As an example serves three state (0, 1, 2)
counter described by means of all the three
formalisms mentioned in paper (Tab. 6).

7. CONCLUSION

This paper presents the idea of looking at the
system from three different points of view, namely
by using three different FDTs: Petri Nets, Process
Algebras, and B-AMN. Existing elementary
constructions presented in this paper together with
other properties of the selected FDTs support
a belief that such interfaces can be constructed.

REFERENCES

[1] Baeten, J.C.M.: Applications of process
algebra, Cambridge University Press, 1990.

[2] Dijkstra, E. W.:A Discipline of Programming.
Prentice Hall, 1976.

[3] Hudák, Š.: Rozšírenia Petriho Sietí, Habilitačná
práca, VŠT EF Košice, pp.107, 1980.

[4] Hudák, Š.: Reachability analysis of systems
based on Petri Nets, Elfa Košice, pp.272, 1999.

[5] Lano, K.: The B Language and Method,
Springer – Verlag, 1996.

[6] Olderog, E. R.: Nets, terms and formulas,
Cambridge University Press, 1991.

[7] Olszewski, J.: Fast Deadlock Detection in CCS
Systems Using Petri Nets, Department of
Software Engineering, School of Computer
Science and Engineering, University of New
South Wales, Sydney, Australia.

[8] Olszewski, J.: Fast Deadlock Detection in CCS
Systems Using Petri Nets, Department of
Software Engineering, School of Computer
Science and Engineering, University of New
South Wales, Sydney, Australia.

[9] Šimoňák, S.: Formálne metódy špecifikácie
a analýzy časovo-kritických systémov, Písomná
práca k dizeratačnej skúške, TU FEI Košice,
2000.

[10] Vokorokos, L.: Diagnosis of mechanical
machineries using the parallel computer
system. East-Slovak printers l.t.d. 2000. p. 152.
ISBN 80-7099-619-6, Slovakia.

BIOGRAPHY

Štefan Hudák was born on August 25, 1939. He
graduated from Moscow Institute of Energy,
Faculty of Radioengineering in 1962. He obtained
his PhD degree in Technical Cybernetics in 1977
from Slovak Technical University and DrSc degree
in Theoretical Informatics in 1997 from
T.Schevchenko University, Kiew, Ukraine. He is
now Professor of Computing and Informatics at
Faculty of Electrical Engineering and Informatics,
Technical University in Košice. His interests are in
automata theory, formal description techniques,
Petri Nets and time-critical systems.

Slavomír Šimoňák was born on 23.9.1974. In 1998
he graduated (MSc.) at the Department of
Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at Technical
University in Košice. He is now PhD candidate in
Informatics at DCI FEI TU. His scientific research
is focusing on formal methods for design and
analysis of discrete systems. In addition, he also
investigates problems related to time-critical
systems.

