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SUMMARY
In the article presented we deal with new knowledge of the behaviour of dynamical systems both from theoretical and

practical point of view.
Switching sequential circuits are an indispensable part of many modern electronic devices, such as memory cells, flip-

flop sensors and many others. Since the invention of flip-flop switching circuits, the study of their dynamic behaviour has
played an ever-increasing role. The dynamic properties of sequential circuits can be investigated by means of switching
between the system's attractor. In this paper the boundary surfaces are discussed that play a crucial role in the process of
switching.

By "analysis of the multivalued logic (MVL) circuit" we understand graphical representation of boundary surfaces that
divide the basins of attraction. Each region of attraction contains one stable equilibrium, i.e. a stable singularity or a stable
limit cycle. At existence of stable limit cycle are boundary surfaces very complicated and the control of such MVL circuit
would most probably be problematic. Therefore we expected that when the stable limit cycles are absent the shape of the
boundary surfaces will be simple and therethrough investigated structure would be more simply controlled. The simulation of
the MVL structure shown that no always is morphology of the boundary surfaces simple when the stable limit cycles are
absent. The knowledge about of morphology of the boundary surfaces corresponding to stable attractors makes it possible to
design reliable methods of control of MVL structures.
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1. INDRODUCTION

The objective in this paper will be an analysis of
a MVL consisting of two resonant tunnel diodes
(RTD) connected in series. One of the RTDs is an
element and the other represents a load. Since the
load exhibits negative dynamic resistance, a natural
question arose as to the behavior of this object
described by equations (2) later in the text. Concept
of the research about MVL circuit was first
internally published in [10]. The first simulation
results shown extreme distinguished from
simulations refer to so-called “classic bistability” in
[9], [19].

The very first simulations of the system's
behavior suggested that the title STATE SPACE
MYSTERY in [3] is not exaggerated at all. Since the
RTDs are, according to [21], [1], [7], able to work at
gigahertz frequencies, an analysis of these objects
has considerable practical significance also. The
advantages of MVL from the viewpoint of their
transfer to higher orders are described in work [7].

By "analysis of the MVL circuit" we understand
graphical representation of boundary surfaces (BS)
that divide the basins of attraction. Each region of
attraction contains one stable equilibrium, i.e.
a stable singularity or a stable limit cycle. The
algorithm for the calculation of the BS was first
published in [12]. The significance of BS was also
described in paper [6], which was included in the

book [2], since it deals with boundary surfaces in the
context of Chua's circuit and a control pulse.

2. THE CIRCUIT OF THE MULTIVALUED
MEMORY

The above-mentioned MVL circuit is shown in
Fig.1 where the symbols of nonlinear elements
correspond to resonant tunnel diodes. Let i2(u2) and
i1(u1) represent the V−I characteristics of the element
and the „negative“ load respectively. Both
characteristics are piecewise-linear (PWL)
characteristics. General algebraic form of the PWL
characteristics was first derived in [11].
Characteristics are defined by the expression:
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Fig.1  Model of the memory cell



18 The State Space Mystery in Multiple-Valued Logic Circuit with Load Plane – Part I

( ) ( )
( ) ( )

( ) ( ) ( )

0 3 1 0 1

2 1 2 3 2 3

1 0 1 2 1 2 3 2 3

1 1( )
2 2

1
2

f u g g u g g u U

g g u U g g u U

g g U g g U g g U

= + +  − − +

− − + − −  −

− + − + −  

(1)

Resistance R can represent the resistivity of
battery. Inductance L may be parasitic inductance,
and 1C , 2C  are parasitic capacitances of the RTD’s.
The symbol ∆ I  in Fig.1 denotes a rectangular
current control pulse. After defining all the
parameters of the circuit in Fig.1 we can write
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(2)

The V-I characteristics ( )k kf u for the active
( 2)k =  and load device ( 1)k = represent surfaces in
the state space 3R  and their traces are depicted in
the planes 1 0u = , and 2 0u = in Fig.2. The series
resistance R may be depicted in the state space
through the equality 1 0Q = which corresponds to
a plane. Its traces: α, β, γ are shown in all projection
planes: 1 20, 0, 0i u u= = =  respectively.

Fig. 2 Traces α, β, γ of the load plane correspond
to the equality 1 0Q =  in Eq.2, for resistance

40R = Ω . Parameters of the characteristics are
introduced in commentary of Tab.1. Singularities

1 2 3 1 2, , , ,S S S N N  lie in load plane 1 0Q = .

The determination of the singularities in the
Monge projection and their corresponding
projections is shown in Fig.2. The figure gives us an
idea about how dramatically the value R may affects
the number of singularities. In the following we will
consider only the case 0R =  in which case the load

plane is perpendicular to the projection plane 0i = .
The traces of V-I characteristics and singularities
projected onto the plane 1 0u = are shown in Fig.3.
Here it is clear that the change of R to zero value
corresponds to five singularities. The geometric
determination of the singularities in Fig.2 was first
published in [15].

3. ANALYSIS OF THE CIRCUIT

Dynamic properties of the circuit are most
influenced by the character of the singularities and
especially saddle points 1 2,N N . Their nature is
given by the eigenvalues of the Jacobi matrix. For
the system (2) the Jacobi matrix has the form.
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A (3)

where k
ig  correspond to conductances V-I

characteristics in particular singularity ( 0, 1, 2, 3i =
see text for Tab. 1).

Eigenvalues are defined through

det 0λ− =A 1 (4)

where λ are the eigenvalues of the matrix A and 1 is
the unit matrix.

In the case of positive load all the eigenvalues of
the saddle points had the property that all but one of
them had negative real parts regardless order of the
system. This was also corroborated by the particular
cases investigated in [12], [18], [13], [8] and [20].
However, during further investigation was
discovered that above mentioned postulate has
specific constrains. Relationship of eigenvalues to
dynamic system will be introduced more exactly in
the next papers.

In Fig.3 we give cross sections of the boundary
surfaces surrounding the regions of attraction for
oscillatory and static attractors. The values of
conductances, inductance, capacitances, eigenvalues
of the Jacobi matrix and eigenvectors αij, including
the coordinates of break points of I-V characteristics
are given in Tab. 1.

To depict the basins of attraction we used the
grid technique in which every gray-scale point in
Fig.3 corresponds to a trajectory going to its
attractor. The gray-scale/attractor correspondence is
clear from the Monge projection in Fig.3. It should
be noted that in Fig.3 is depicted the cross-section in
the plane 2,i u  of the regions of attraction
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corresponding to the plane 1 91u mV=  which is the
value corresponding to the saddle 2N . Similarly, in
the plane 1 2,u u  is the cross-section through the
singularity 2N  ( 2,9i mA= ). There is also the trace
of the tangent plane ( 2EG ) to the double surfaces
separating the attractors 2 3,S S . This trace of the
tangent plane is tangent to the cross-section of the
boundaries in 2N . This simulation test has been first
provided in [17].

Fig. 3 The Monge’s projection of the cross-section
(in singularity N2) of the boundary surfaces and
stable limit cycles (L1, L2, L3) and unstable limit
cycle (LN).

According to [12] this tangent plane is given by
the equation:

1 11 1 12 2 13 0y u u iα α α= ∆ + ∆ + ∆ = (5)

where the eigenvectors ijα , correspond to the
dominant eigenvalue of the Jacobi matrix as was

first reported in [12]. The values of the eigenvectors
for both saddle points are given in Tab. 1.

co-ordinates eigenvectorEq
uili
br.

ui1
[mV]

ui2
[mV]

ii
[mA]

1iα 2iα 3iα

S1 385 54 4,5 * * *
N1 353 86 3,5 8,2922 -0,8703 1
S2 275 164 1 * * *
N2 91 348 2,9 -8,2028 -1,1059 1
S3 43 397 4,3 * * *

Eigenvalues x 10 9Eq
uili
br. 1iλ }Re{ 23iλ }Im{ 23iλ

S1 -123.213593379 -53.693203310 185.870855376
N1     31.277885807    9.461057096 178.912952777
S2    -32.840127795 -15.579936102 196.809479969
N2     25.828651316    8.985674341 183.943148711
S3  -145.801276658 -55.199361671 179.155674391

Tab. 1 The numerical values of the co-ordinates,
eigenvalues and eigenvector for equilibria
corresponding to memory cell in Fig.1. The bias
voltage of the memory cell U=440mV; L=1e−10H,
C1=C2=5e−13F, R=0 Ω . The parameter values
corresponding to active and load device are as
follows: 1g0=0,1; 1g1=−0,05; 1g2=0; 1g3=0,032;
2g0=0,0833; 2g1=−0,0571; 2g2=0; 2g3=0,0281[S];
1U1=50; 1U2=140; 1U3=260; 2U1=60; 2U2=130;
2U3=280 [mV].

From the viewpoint of morphology the surfaces
and the corresponding regions of attraction exhibit
unusual properties since in addition to the three
stable singularities 1 2 3, ,S S S , there are also three
stable limit cycles 1 2 3, ,L L L  which are not coupled
with the nonstable limit cycles as was the case with
positive load in the cases described in [6], [9], [13]
and [8]. In this case we have only one unstable limit
cycle, denoted by NL  in Fig. 3. It is located on the
border of four regions of attraction corresponding to

1 2 3 2, , ,L L L S . On the surface of the bounded region
corresponding to singularity 2S  is the limit cycle NL
which was detected in the computer simulation by
integration in backward time. Hence NL  is not
saddle-type as in the case of positive load in [6], [9],
[13] and [8], which means there are no initial
conditions whose trajectories are attracted towards

NL  as was the case in [18] and [9].
From the practical viewpoint, however, unstable

oscillatory phenomena are undesirable. In such
a case this analysis is valuable in that it enables to
verify the parameter values for which the oscillatory
phenomenon is absent. It is most likely that this will
occur when the absolute value of negative normed
conductance of both RTDs will be less than 1, or the
practical value R>0 will be assummed.

0

4.4

13.2

22
i

[mA]

-4.4

-13.2

-22

220 330
[mV]
u2

L1

L2

EG2

0

110

220

330

u1
[mV]

110 220 330 u2 [mV]

S1

N1

S2

N2
S3

EG2

L1 L2

LN

L3



20 The State Space Mystery in Multiple-Valued Logic Circuit with Load Plane – Part I

Fig. 4 The cross-sections of the attractors, for
corresponding stable states at different current levels
and projection onto 1 2,u u -plane. The different gray-
scale areas represent the domains of attraction for
sinks 1 2 3, ,S S S . Depicted are the both traces of
tangential planes 1 2,E E  as well. Capacitances were
chosen 1 2 3 14C C e F= = − .

4. MORPHOLOGY OF THE BOUNDARY
SURFACE WHEN LIMIT CYCLES ARE
ABSENT

In Fig. 4, Fig. 5 and Fig. 6 we present cross
sections of boundary surfaces, when the limit cycles
are absent. The capacitances of the circuit in Fig.1
are the bifurcation parameters. Fig.4, and Fig. 5 are
related to the values 1 2 3 14C C e F= = −  and

1 2 4 14C C e F= = −  respectively. The eigenvalues of
the Jacobi matrix corresponding to the saddle point

1N for 1 2 3 14C C e F= = −  are

1

2

3

17.22358266519e+11
-6.27750395530e+11
-2.57941204322e+11

λ
λ
λ

=
=
=

and similarly the eigenvalues for the saddle point
2N are

1

2

3

14.57963369881e+11
-3.63981684940e+11 -1.85517698577e+11i
-3.63981684940e+11 +1.85517698577e+11i

λ
λ
λ

=
=
=

Interesting in this case is the shape of the region
of attractions. The darkest gray area corresponds to
region of attraction of the singularity 1S , the lightest
gray area corresponds to region of attraction of 2S
and gray area corresponds to region of attraction of

3S . The cross section at current level 6i mA=− (in
Fig. 4 it match to note 6i = − , the same convention
is used for all subfigures) is the first one to show the
region of attraction only for stable singularity 2S . At
the level 5i mA= − this region is branching, whereas
from 3i mA=−  to 3,5i mA=  there are already very
complicated structure of boundary surfaces. At
higher current levels there is the morphology of
boundary surfaces simple again. From current
13 29.2mA−  there is the region of attraction only for
stable singularity 1S . The shape of the region of
attractions can be clearer, as well, from cross-
sections parametrized by 1u  in Fig.5 (notation of the
cross sections at different voltage levels and
different gray-scale areas of attraction used in this
figure are the same as mentioned for Fig.4). The
sections, parametrized by 1u , clearly document the
morphological complexity of the corresponding
regions. Therefore the control of such a ternary
would most probably be problematic.

More simple shape of the region of attractions
(useful for the control of such a ternary, for
example) is depicted in Fig. 6. The capacitances of
the circuit in Fig.1 correspond to the regions of
attraction in Fig. 6 was chosen 1 2 9 14C C e F= = − .
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Notation of the cross sections at different current
levels and different gray-scale areas of attraction
used in this figure are the same as mentioned for
Fig.4.

Fig. 5 The cross-section of the attractors, for
corresponding stable states at different voltage levels
( 1u ) and projection onto 2,i u -plane. The different
gray-scale areas represent the domains of attraction
for sinks 1 2 3, ,S S S . Capacitances were chosen

1 2 4 14C C e F= = − .

Fig. 6 The cross-section of the attractors, for
corresponding stable states at different current levels
and projection onto 1 2,u u -plane. The different gray-
scale areas represent the domains of attraction for
sinks 1 2 3, ,S S S . Depicted are the both tangential
planes 1 2,E E  as well. Capacitances were chosen

1 2 9 14C C e F= = − .

5. CONCLUSION

From the viewpoint of multiple-valued logic
based on RTD diodes the most significant result is
one corresponding to the nonzero R in Fig.1. Those
values of R that were considered in this contribution
could correspond to the resistance of the sources to
which the circuit is connected. The fact how
dramatically the number of singularities is affected
by the value of R was first published in [15]. The
method of analysis of MVL, demonstrated in this
contribution gives the possibility of reliable design
of MVL structures.

The morphology of the basins of attraction,
corresponding to stable attractors makes it possible
to design reliable methods of control of MVL
structures, which was first published in [16], [14],
and later in [18] and [4].
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